
PROLE 2009

A New Proposal for Using First-Order Theorem

Provers to Reason with OWL DL Ontologies 1

M. Alecha2 , J. Álvez2 ,3 , M. Hermo2 and E. Laparra2

Dpto. de Lenguajes y Sistemas Informáticos Dpto. de Sistemas Informáticos y Computación
Universidad del Paı́s Vasco Universidad Complutense de Madrid

Abstract

Existing OWL DL reasoners have been carefully designed to reason with DL ontologies in an efficient way at the expense
of lack of expressiveness. In order to overcome this limitation in expressiveness, there have been a few attempts to use first-
order logic (FOL) theorem provers, which are known to be less efficient than DL reasoners, to work with DL ontologies.
However, these approaches did not still allow full FOL capabilities in queries. In this paper, we introduce a new approach
(currently under development) to translate OWL DL ontologies into FOL. The translation has been tested using a simple
ontology about animals and some FOL theorem provers. On the basis of these tests, we show that our proposal achieves a
good trade-off between expressive and simple queries. On one hand, our system is capable of handling any FOL query that
can not be processed by DL reasoners. On the other hand, simple queries are solved in reasonable time by FOL theorem
provers in comparison with ad hoc DL reasoners.

Keywords: OWL DL, first-order logic, theorem proving, ontologies.

1 Introduction

The OWL language [3] has been developed to publish and share knowledge on the Web

using ontologies. More specifically, there are three different sublanguages of OWL: OWL

Lite, OWL DL and OWL Full. Each of these sublanguages has a different level of expres-

siveness, OWL Lite being the least expressive one. The OWL DL sublanguage corresponds

to a decidable fragment of FOL: the SHOIND−
n Description Logic (DL) [1,3,5].

Currently, there are some efficient OWL DL reasoners, such as FaCT++ [14] or Pel-

let [12], which are sound and complete. Besides, there exist some very powerful utilities

for creating, maintaining and accessing to DL ontologies, such as Protégé [7]. All these

tools provide the use of DL ontologies for representing knowledge. However, the lack

of expressiveness of OWL DL drastically reduces its application for dealing with complex

information and it is commonly accepted that DL ontologies are only suitable for represent-

ing very simple relations and properties. For example, the transitivity property of relations

1 This work has been partially supported by the Spanish projects TIN2007-66523, LoRea (GIU07/35), Promesas-CAM
(S-0505/TIC/0407) and STAMP (TIN2008-06622-C03-01/TIN).
2 Email: {mikel.alecha, javier.alvez, montserrat.hermo, egoitz.laparra}@ehu.es
3 Email: javieralvez@fdi.ucm.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:javier.alvez@ehu.es
mailto:javieralvez@fdi.ucm.es

Alecha&Álvez&Hermo&Laparra

can not be expressed using the OWL DL language, although transitivity is used in OWL

DL as a built-in property (inheritable relations). In the same way, one could try to sim-

ulate any property that can not be expressed in OWL DL. However, this solution is not

suitable because it requires to adapt DL reasoners to each simulated property using ad hoc

techniques.

In the literature, we can find some attempts to use FOL theorem provers to reason with

DL ontologies [2,15,16]. Since OWL DL is a fragment of FOL, these approaches propose

different translations of DL axioms into a FOL language. Then, we can use any general

purpose FOL theorem prover to reason with the translated ontology. Obviously, DL reason-

ers outperform FOL theorem provers at solving OWL DL queries, specially when dealing

with large ontologies. However, these past studies have shown that it could be a good idea

to generate hybrid systems for reasoning with DL ontologies. Following such a proposal,

DL reasoners would handle most of the tasks —consistency checking, ontology classifica-

tion, OWL DL queries, etc.—, whereas FOL theorem provers would only be used when

strictly necessary. That is, to solve non-OWL DL queries. In this task, the performance

of FOL theorem provers highly depends on the translation from DL into FOL axioms. In-

deed, in order to achieve better performance, the syntactic form of queries is restricted in

the proposals in [2,16] (non-OWL DL queries are out of the scope of [15]). Thus, the lack

of expressiveness in queries still remains when reasoning with DL ontologies.

In this work, we present a different proposal for the translation of OWL DL ontologies

into FOL. The main purpose of our translation is to be able to use FOL theorem provers

for reasoning with DL ontologies in an efficient way without restricting queries to the

OWL DL sublanguage. Most successful FOL theorem provers, such as Vampire [10] or

E Prover [11], work by refutation. That is, given any theory and any goal, theorem provers

try to decide whether the goal is a logical consequence of the theory by proving that the

conjunction of the theory and the negation of the goal is unsatisfiable. The main drawback

is that these systems are able to answer whenever the goal follows from the theory (the

answer is positive), but theorem provers usually loop (give no answer) when there is no

refutation. In order to overcome this limitation, our proposal consists in translating any

OWL DL ontology into a decidable and complete FOL theory. In this way, given any goal,

we ask to the theorem prover whether the goal or the negated goal is a logical consequence

of the theory. That is, we run two queries in parallel. Since the theory is decidable and

complete, theorem provers are supposed to find a refutation for some of the queries, which

allows us to solve any goal.

We have tested our translation with an small ontology about animals that has been ex-

tracted from the SUMO ontology [8]. For the tests, we have used Vampire [10], which

is one of the most successful and efficient FOL theorem provers of the CASC competi-

tion [9,13]. Our results prove that the proposed system is suitable for reasoning with DL

ontologies.

The paper is organized as follows: in the next section, we briefly describe the OWL DL

language and provide some notation; besides, in Subsection 2.1, we introduce the ontology

about animals that will be used throughout the paper; in Section 3, we review a previous

proposal that can be found in the literature; then, in Section 4, we informally define our

translation of OWL DL ontologies into FOL; finally, we give some conclusions and discuss

future work in Section 5.

2

Alecha&Álvez&Hermo&Laparra

DL Syntax Semantics

C CI ⊆ 4I

> >I = 4I

⊥ ⊥I = ∅

C1 u C2 (C1 u C2)
I = CI

1
∩ CI

2

¬C (¬C)I = 4I \ CI

∃R.C (∃R.C)I = { x | 〈x, y〉 ∈ RI ∧ y ∈ CI }

∀R.C (∀R.C)I = { x | 〈x, y〉 ∈ RI → y ∈ CI }

o oI ∈ 4I

Table 1
Some basic terms about concepts and individuals

DL Syntax Semantics

C v C1 u . . .u Cn CI ⊆ CI
1 ∩ . . .∩ CI

n

C ≡ C1 u . . .u Cn CI = CI
1 ∩ . . .∩ CI

n

Ci u Cj ≡ ⊥ CI
i ∩ CI

j = ∅

o ∈ C oI ∈ CI

Table 2
Some formulas

2 Preliminaries

OWL DL syntax and semantics are presented in [3]. In Tables 1 and 2 we recall the main

aspects of OWL DL in order to understand the examples in this paper. Roughly speaking,

OWL DL ontologies define use concepts (or classes, denoted by C), properties (relations or

roles, denoted by R) and instances (or objects). The union of all possible classes is denoted

by 4, whereas 4 × 4 is the union of all possible relations. By default, there are two

predefined classes in any OWL DL ontology, Thing and Nothing (denoted by > and ⊥
respectively). Thing is superclass of every class defined in the ontology and Nothing

has no proper subclasses.

Dealing with classes, we use the classical notation of sets: union (∪), intersection (∩),

inclusion (⊆), set difference (\), equality (=) and empty class (∅).

2.1 An OWL Ontology: Animals

All the examples in this paper use a small ontology about animals that comes from SUMO,

the IEEE Suggested Upper Merged Ontology (see [8]). More specifically, our ontology

consists in the hierarchy of classes defined in SUMO version 1.48 4 starting from Animal

4 We choose SUMO version 1.48 because it is mapped to WordNet 1.6

3

Alecha&Álvez&Hermo&Laparra

Animal

Vertebrate

Invertebrate

Mollusk

Arthropod

Worm

WarmBloodedVertebrate

ColdBloodedVertebrate

Arachnid

Insect

Crustacean

Myriapod

Bird

Mammal

Amphibian

Fish

Reptile

HoofedMammal

Carnivore

Primate

Marsupial

Rodent

Aquat icMammal

Canine

Feline

Hominid

Ape

Monkey

Human

Disjoint classes

Non-disjoint classes

...

...

Class 1

Class n

Class 1

Class n

Fig. 1. Classes of the Ontology about Animals

(see Figure 1). In this hierarchy, the relations subclass and disjoint of SUMO have been

preserved. Besides, we have included two changes in our ontology. First, Human is not

subclass of Carnivore in the original ontology. This change allows us to illustrate the

problem of multiple inheritance. Second, we have inserted two objects as instance of each

class without subclasses. To sum up, our ontology consists of 29 classes and 38 objects.

As described in Figure 1, the class Animal is divided into the subclasses

Vertebrate and Invertebrate, which are explicitly declared to be disjoint. Both

classes are also divided into several subclasses. All the subclasses of the same class are de-

clared to be disjoint except for the class Carnivore, which is not disjoint with the rest of

subclasses of Mammal. The next OWL DL sentences trivially follows from our ontology:

¬(Invertebrate v Bird) (Human ≡ Carnivore u Primate)

(Mammal v Animal) (⊥ ≡ Arthropod u Primate)

3 Translation Issues in Hoolet

The main proposals for using FOL theorem provers to solve OWL DL reasoning tasks are

presented in [2,16]. Unfortunately, the last one is not accessible. For this reason, we only

show how the first approach works, which is called Hoolet [2].

The Hoolet system translates an OWL DL ontology into a collection of FOL axioms on

the basis of the well-known OWL DL semantics [1,4]. Then, the resulting FOL axioms are

passed to the FOL theorem prover, which in this case is Vampire [10].

The translation φ maps OWL DL concept C and role R into unary and binary predi-

cates φC(X) and φR(X, Y) respectively [15]. In Table 3, we describe the translation of

some concept and role axioms. It is worth noting that all axioms except the last one are

4

Alecha&Álvez&Hermo&Laparra

DL FOL

C1 v C2 ∀X(φC1
(X) → φC2

(X))

C1 ≡ (C2 u C3) ∀X(φC1
(X) ↔ (φC2

(X) ∧ φC3
(X)))

⊥ ≡ (C2 u C3) ∀X(¬(φC2
(X) ∧ φC3

(X)))

R1 v R2 ∀X∀Y (φR1
(X, Y) → φR2

(X, Y))

> v ∀R.C ∀X∀Y (φR(X, Y) → φC2
(Y))

C1 ≡ (C2 u ∃R.C3) ∀X(φC1
(X) ↔ [φC2

(X) ∧ ∃Y (φR(X, Y) ∧ φC3
(Y))])

Table 3
Translation of OWL DL Axioms in Hoolet

Horn clauses. Generally a complete translation from OWL DL into FOL obtains non-Horn

clauses.

With respect to instances, the Hoolet system adds a different constant ci for each in-

stance i occurring in the OWL DL ontology. The problem with this is that most popular

and successful theorem provers such as Vampire [10], which is the one used by Hoolet, do

not implement the unique name assumption. That is, theorem provers do not assume that

two different constants represent different objects. Thus, for every pair of instances i and j

represented by the constants ci and cj that are declared to be distinct, Hoolet adds ci 6= cj

as an axiom to the translation.

However, the above information can be sometimes inferred from the remaining axioms

of the ontology. That is, if ci and cj are instances of two disjoint classes, then Hoolet can

infer that ci and cj are distinct.

Finally, Hoolet relates instances and classes using φC(ci) as assertions when i is an

instance of C.

Regarding our ontology about animals, the Hoolet system models it as follows:

Classes of Animal

∀X : V ertebrate(X) → Animal(X)

∀X : WarmBloodedV ertebrate(X) → V ertebrate(X)

∀X : ColdBloodedV ertebrate(X) → V ertebrate(X)

∀X : Fish(X) → ColdBloodedV ertebrate(X)

. . .

Classes Nothing (⊥) and Thing (>)

∀X : Animal(X) → Thing(X)

∀X : ¬Nothing(X)

Disjoint classes

∀X : ¬(V ertebrate(X) ∧ Invertebrate(X))

∀X : ¬(WarmBloodedV ertebrate(X) ∧ ColdBloodedV ertebrate(X))

. . .

Regarding instances, our ontology includes two instances for each class without sub-

classes. For example, Tuna and Shark are declared as instances of Fish. The Hoolet

5

Alecha&Álvez&Hermo&Laparra

system translates instances as follows:

Instances of Animal

Fish(Tuna) Fish(Shark) Tuna 6= Shark

Hoolet allows six kinds of queries, all of them ground (without variables):

• satisfiable: checks whether the ontology is consistent or not.

• retrieve Class: returns all the instances of the class. For this purpose, Hoolet checks

every instance defined in the ontology.

• instance Class Individual: checks whether Individual is an instance of

Class.

• related Individual Property Individual: checks whether both individuals are

related by the property.

• same Individual Individual: checks whether both individuals are equal.

• different Individual Individual: checks whether both individuals are different.

Hoolet restricts queries to the above six kinds of sentences in order to ensure the FOL

theorem prover finds an answer. However, a FOL theorem prover is able to answer more

queries using Hoolet’s translation. For example, we obtain the following result using Vam-

pire:

∀X : ¬(Arthropod(X) ∧ Primate(X))? Yes

Furthermore, Hoolet is not able to answer some queries that most OWL DL reasoners

can solve. For example, while OWL DL reasoners answer “No” to the goal

∃X : (X v Carnivore ∧ X v Hominid)

Hoolet does not answer. This limitation is due to Hoolet’s translation, which transforms

concepts (classes) into unary predicates, restricting the power of reasoning since some clas-

sical properties of binary relations, such as transitivity or symmetry, cannot be expressed

using unary predicates.

Obviously, some queries cannot be solved using Hoolet or OWL DL reasoners:

∀X : ((Fish v X ∧ Rodent v X) → V ertebrate v X)

∃X : ((X 6≡ ⊥ ∧ ∀Y : (Y 6≡ X ∧ Y 6≡ ⊥)) → ¬(Y v X))

The first query asks whether the Vertebrate class is a subclass of every superclass of

both Fish and Rodent. The last one checks whether there exists a class without proper

subclasses. Regarding our ontology about animals, such a class could be Bird.

Being able to solve the above queries (and any non-OWL DL query) is the aim of the

translation described in the next section.

4 Our Translation Proposal

For the translation of OWL DL ontologies, we use two main classes relations: subclass (v)

and disjoint (�). The definition of the disjoint relation is provided in Table 4. Besides, we

also consider the relation instance (∈). All these relations are binary in order to overcome

the main limitations of Hoolet. The remaining properties in an OWL DL ontology are not

still translated by our system. However, the translation of these missing properties is very

similar to the treatment of instances.

6

Alecha&Álvez&Hermo&Laparra

� Φ�

Definition ∀X∀Y (Φ�(X, Y) ↔ ∀I¬(Φ∈(I, X)∧ Φ∈(I, Y)))

Table 4
Definition of the Disjoint Relation

In our approach, the axiom of Table 4 will be common to any OWL DL ontology.

Then, depending on the particular ontology, our system has to add new axioms, as defined

in Table 5 regarding classes. For the description of the translation, we use the auxiliary

symbol @ in expressions of the form C @ D, which denotes that C is a proper and direct

subclass of the class D.

OWL DL Ontology FOL Translation

{ C | C @ D } = {C1, . . . , Cn} ∀X (Φv(X, D) ↔ (X = D ∨ Φv(X, C1) ∨ . . .∨

Φv(X, Cn)))

{ C | D @ C } = {C1, . . . , Cn} ∀X (Φv(D, X) ↔ (X = D ∨ Φv(C1, X)∨ . . .∨

Φv(Cn, X)))

⊥ ≡ (D u C) ∀I (¬(Φ∈(I, D)∧ Φ∈(I, C)))

Table 5
FOL Translation of OWL DL Ontologies: Classes

Following this translation, our ontology about animals is modeled as follows:

Classes of Animal

∀X : Φv(X, Animal) ↔ (X = Animal ∨ Φv(X, V ertebrate)

∨ Φv(X, Invertebrate))

∀X : Φv(Animal, X) ↔ X = Animal

∀X : Φv(X, V ertebrate) ↔ (X = V ertebrate

∨ Φv(X, ColdBloodedV ertebrate)

∨ Φv(X, WarmBloodedV ertebrate))

∀X : Φv(V ertebrate, X) ↔ (X = V ertebrate ∨ Φv(Animal, X))

. . .

∀X : Φv(X, Bird)) ↔ X = Bird

. . .

Disjoint classes

∀I : (¬[Φ∈(I, V ertebrate) ∧ Φ∈(I, Invertebrate)])

. . .

∀I : (¬[Φ∈(I, Mammal)∧ Φ∈(I, Bird)])

. . .

With respect to objects, the translation is described in Table 6. Our translation takes into

account that instance is an inheritable relation. The translation of a non-inheritable relation

7

Alecha&Álvez&Hermo&Laparra

produces axioms like the ones in Table 6 where right-hand subformulas in equivalences

exclusively consist of equality atoms.

OWL DL Ontology FOL Translation

o ∈ D ∀X (Φ∈(o, X) ↔ Φv(D, X))

{ o | o ∈ D } = {o1, . . . , om} ∀I (Φ∈(I, D) ↔ (I = o1 ∨ . . .∨ X = om∨

{ C | C @ D } = {C1, . . . , Cn} Φ∈(I, C1) ∨ . . .∨ Φ∈(I, Cn)))

Table 6
FOL Translation of OWL DL Ontologies: Objects

Finally, since we are dealing with elements of different nature (that is, classes and

objects), we also include type information adding two axioms. These restrict the possible

values that can be assigned to a variable. Assuming that C and O respectively denotes the

set of all classes and objects defined in the ontology, our translation included these two

axioms

∀X (ΦC(X) ↔ X = c1 ∨ . . .X = cm)

∀X (ΦO(X) ↔ X = o1 ∨ . . .X = on)

where C = {c1, . . . , cm} and O = {o1, . . . , on}.

As discussed in Section 5, the theory that results from the conjunction of all the above

described axioms is sound and complete.

Once the ontology is translated into the above collection of FOL axioms, we can ask

whether a FOL formula (over the signature of our theory) is a logical consequence of the

theory. For this purpose, each query is typed in the classical way, restricting the type of

arguments in every predicate. For example, both arguments of Φv must be classes, whereas

the first argument of Φ∈ must be an object and the second one a class. Then, every query

of the form ∀X ϕ is transformed (via the γ function) into ∀X (ΦC(X) → γ(ϕ)) (resp.

∀X (ΦO(X) → γ(ϕ))) if X appears in arguments restricted to classes (resp. objects) in

ϕ. Besides, every query of the form ∃X ϕ is replaced with ∃X (ΦC(X) ∧ γ(ϕ)) (resp.

∃X (ΦO(X) ∧ γ(ϕ))) if X occurs in arguments restricted to classes (resp. objects) in ϕ.

Below, in Table 7 we experimentally compare 5 the running time of

both Hoolet and our system. We make ten different queries and eval-

uate the time used by Vampire to answer. The system is available at

http://adimen.si.ehu.es/cgi-bin/Beast/index.perl

Obviously, when Hoolet is able to respond, our system takes longer than Hoolet. How-

ever, as we explain in the next section, we can answer not only the above nine queries but

also any FOL query over the signature of our theory.

5 Conclusions and Future Work

So far, the results of our experiments have been very promising. Our tests prove that it is

possible to use FOL theorem provers to reason with OWL DL ontologies that have been

5 For tests, we use an Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz with 8Gb RAM.

8

http://adimen.si.ehu.es/cgi-bin/Beast/index.perl

Alecha&Álvez&Hermo&Laparra

FOL query Hoolet Our System

Φ∈(Tuna, Animal) Yes (0.003 seconds) Yes (0.025 seconds)

Φv(Mammal, Animal) Yes (0.003s) Yes (0.024s)

Φv(Invertebrate, Bird) cannot prove No (0.018s)

Φ�(Arthropod, Primate) Yes (0.005s) Yes (0.052s)

Φ�(Carnivore, Primate) cannot prove No (0.024s)

∀X((Φv(Fish, X) ∧ Φv(Rodent, X))

=> Φv(V ertebrate, X)) cannot prove Yes (0.056s)

∃X∀Y ((X 6= Y) => ¬ (Φv(Y, X)) cannot prove Yes (0.013s)

∀X(Φv(X, X)) cannot prove Yes (0.110s)

∀X∀Y ∀Z((Φv(X, Y) ∧ Φv(Y, Z))

=> Φv(X, Z)) cannot prove Yes (0.672s)

∀I∀X∀Y ((Φ∈(I, X)∧ Φv(X, Y))

=> Φ∈(I, Y)) cannot prove Yes (49.260s)

Table 7
Running Time

properly translated into FOL. Therefore, we think that it is reasonable to continue the work

on this area.

Another remarkable conclusion of this work is that a suitable translation (or a suitable

representation of knowledge) allows to overcome the limitations of current FOL theorem

provers, which are not ad hoc tools for reasoning with ontologies. However, finding a good

translation is not an easy task. It depends on the way in which FOL theorem provers work

and, of course, on the kind of queries to solve. Our translation has taken into account that

general purpose FOL theorem provers are resolution-based. However, we have not added

redundant information about properties of binary relations (reflexive, transitive property,

etc.), which can be inferred from the remaining axioms that result from our translation.

Nevertheless, adding this redundant information could help theorem provers from solving

some queries in much less time.

Further, it is worth to note that we have empirically proved 6 the complete nature of the

resulting theories. More specifically, we automatically check that any ground atom (or its

negation) that can be constructed using the predicates and constants from the ontology is

a logical consequence of the theory. This fact ensures that, when typing queries, we can

solve any of them, by running the query and its negation in parallel.

However, there are still some limitations due to the use of current FOL theorem provers.

For instance, we only obtain boolean answers to existential queries, instead of providing

the values that satisfy the query. Another restriction is the lack of goal-oriented proof-

6 The execution time of the completeness proof is about 15 minutes.

9

Alecha&Álvez&Hermo&Laparra

search techniques, which prevents the use of FOL theorem provers for reasoning on large

ontologies. We try to overcome this last problem by pre-processing queries in order to

remove non-relevant axioms for each particular query.

Our most immediate future aim is to continue expanding the translation of OWL DL

into FOL until covering OWL DL syntax in its entirety. For this purpose, first we have to

translate OWL DL properties into FOL. In our opinion, the translation of properties is very

similar to the one of instances. Hence, we expect to fulfill this task soon.

Once finishing the treatment of OWL DL ontologies, we also plan to reason with more

expressive ontologies, as discussed in [6]. Anyway, the problem of reasoning on ontologies

like SUMO [8] using FOL theorem provers is still open.

References

[1] Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi and P. F. Patel-Schneider, editors, “The Description Logic
Handbook: Theory, Implementation, and Applications,” Cambridge University Press, 2003.

[2] Bechhofer, S. and I. Horrocks, Hoolet: An OWL reasoner with support for rules (2004).
URL http://owl.man.ac.uk/hoolet/

[3] Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider and L. A. Stein, OWL
web ontology language reference. W3C recommendation (2004).
URL http://www.w3.org/TR/owl-ref

[4] Borgida, A., On the relative expressiveness of description logics and predicate logics, Artificial Intelligence 82 (1996),
pp. 353–367.

[5] Horrocks, I. and P. F. Patel-Schneider, Reducing OWL entailment to description logic satisfiability, Journal of Web
Semantics 1 (2004), pp. 345–357.

[6] Horrocks, I. and A. Voronkov, Reasoning support for expressive ontology languages using a theorem prover, in: J. Dix
and S. J. Hegner, editors, Foundationsof Information and Knowledge Systems (FoIKS 2006), Lecture Notes in Computer
Science 3861 (2006), pp. 201–218.

[7] Knublauch, H., R. W. Fergerson, N. F. Noy and M. A. Musen, The Protégé OWL plugin: An open development
environment for semantic web applications, in: S. A. McIlraith, D. Plexousakis and F. van Harmelen, editors,
Proceedings of the International Semantic Web Conference (ISWC 2004), Lecture Notes in Computer Science 3298
(2004), pp. 229–243.

[8] Niles, I. and A. Pease, Towards a standard upper ontology, in: Proceedings of the International Conference on Formal
Ontology in Information Systems (FOIS ’01) (2001), pp. 2–9.

[9] Pelletier, F. J., G. Sutcliffe and C. B. Suttner, The development of CASC, AI Communications 15 (2002), pp. 79–90.

[10] Riazanov, A. and A. Voronkov, The design and implementation of VAMPIRE, AI Communications 15 (2002), pp. 91–
110.

[11] Schulz, S., E – a brainiac theorem prover, Journal of AI Communications 15 (2002), pp. 111–126.

[12] Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz, Pellet: A practical OWL-DL reasoner, Journal of Web
Semantics 5 (2007), pp. 51–53.

[13] Sutcliffe, G. and C. B. Suttner, The state of CASC, AI Communications 19 (2006), pp. 35–48.

[14] Tsarkov, D. and I. Horrocks, FaCT++ description logic reasoner: System description, in: U. Furbach and N. Shankar,
editors, Proceedings of the International Joint Conference on Automated Reasoning (IJCAR 2006), Lecture Notes in
Computer Science 4130 (2006), pp. 292–297.

[15] Tsarkov, D., A. Riazanov, S. Bechhofer and I. Horrocks, Using Vampire to reason with OWL, in: S. A. McIlraith,
D. Plexousakis and F. van Harmelen, editors, Proceedings of the International Semantic Web Conference (ISWC 2004),
Lecture Notes in Computer Science 3298 (2004), pp. 471–485.

[16] Zhang, Z. and J. A. Miller, Ontology query languages for the semantic web: A performance evaluation, Technical
Report UGA-CS-LSDIS-TR-05-011, Department of Computer Science, University of Georgia, Athens (2005).

10

http://owl.man.ac.uk/hoolet/
http://www.w3.org/TR/owl-ref

	Introduction
	Preliminaries
	An OWL Ontology: Animals

	Translation Issues in Hoolet
	Our Translation Proposal
	Conclusions and Future Work
	References

