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Abstract

The current situation for Word Sense Dis-
ambiguation (WSD) is somewhat stuck
due to lack of training data. We present
in this paper a novel disambiguation al-
gorithm that improves previous systems
based on acquisition of examples by incor-
porating local context information. With
a basic configuration, our method is able
to obtain state-of-the-art performance. We
complemented this work by evaluating
other well-known methods in the same
dataset, and analysing the comparative re-
sults per word. We observed that each
algorithm performed better for different
types of words, and each of them failed for
some particular words. We proposed then
a simple unsupervised voting scheme that
improved significantly over single sys-
tems, achieving the best unsupervised per-
formance on both the Senseval 2 and Sen-
seval 3 lexical sample datasets.

1 Introduction

Word Sense Disambiguation (WSD) is an interme-
diate task that potentially can benefit many other
NLP systems, from machine translation to index-
ing of biomedical texts. The goal of WSD is to
ground the meaning of words in certain contexts
into concepts as defined in some dictionary or lex-
ical repository.

Since 1998, the Senseval challenges have been
serving as showcases for the state-of-the-art WSD
systems. In each competition, Senseval has been
growing in participants, labelling tasks, and tar-
get languages. The most recent Senseval work-
shop (Mihalcea et al., 2004) has again shown

clear superiority in performance of supervised sys-
tems, which rely on hand-tagged data, over other
kinds of techniques (knowledge-based and un-
supervised). However, supervised systems use
large amounts of accurately sense-annotated data
to yield good results, and such resources are very
costly to produce and adapt for specific domains.
This is the so-called knowledge acquisition bottle-
neck, and it has to be tackled in order to produce
technology that can be integrated in real applica-
tions. The challenge is to make systems that dis-
ambiguate all the words in the context, as opposed
to techniques that work for a handful of words.

As shown in the all-words tasks in Senseval-
3 (B. Snyder and M. Palmer, 2004), the current
WSD techniques are only able to exceed the most
frequent sense baseline by a small margin. We be-
lieve the main reason for that is the lack of large
amounts of training material for English words
(not to mention words in other languages). Un-
fortunately developing such resources is difficult
and sometimes not feasible, which has been mo-
tivating us to explore unsupervised techniques to
open up the knowledge acquisition bottleneck in
WSD.

The unsupervised systems that we will apply on
this paper require raw corpora and a thesaurus with
relations between word senses and words. Al-
though these resources are not available for all lan-
guages, there is a growing number of WordNets in
different languages that can be used1. Other ap-
proach would be to apply methods based on dis-
tributional similarity to build a thesaurus automat-
ically from raw corpora (Lin, 1998). The relations
can then be applied in our algorithm. In this paper
we have focused on the results we can obtain for

1http://www.globalwordnet.org/gwa/wordnettable.htm



English, relying on WordNet as thesaurus (Fell-
baum, 1998).

A well known approach for unsupervised WSD
consists of the automatic acquisition of training
data by means of monosemous relatives (Leacock
et al., 1998). This technique roughly follows these
steps: (i) select a set of monosemous words that
are related to the different senses of the target
word, (ii) query the Internet to obtain examples
for each relative, (iii) create a collection of training
examples for each sense, and (iv) use an ML algo-
rithm trained on the acquired collections to tag the
test instances. This method has been used to boot-
strap large sense-tagged corpora (Mihalcea, 2002;
Agirre and Martinez, 2004).

Two important shortcomings of this method are
the lack of monosemous relatives for some senses
of the target words, and the noise introduced by
some distant relatives. In this paper we directly ad-
dress those problems by developing a new method
that makes use of polysemous relatives and relies
on the context of the target word to reduce the
presence of noisy examples.

The remaining of the paper is organised as fol-
lows. In Section 2 we describe related work in
this area. Section 3 briefly introduces the monose-
mous relatives algorithm, and our novel method
is explained in Section 4. Section 5 presents our
experimental setting, and in Section 6 we report
the performance of our technique and the improve-
ment over the monosemous relatives method. Sec-
tion 7 is devoted to compare our system to other
unsupervised techniques and analyse the prospects
for system combination. Finally, we conclude and
discuss future work in Section 8.

2 Related Work

The construction of unsupervised WSD systems
applicable to all words in context has been the goal
of many research initiatives, as can be seen in spe-
cial journals and devoted books - see for instance
(Agirre and Edmonds, 2006) for a recent book. We
will now describe different trends that are being
explored.

Some recent techniques seek to alleviate the
knowledge acquisition bottleneck by combining
training data from different words. Kohomban and
Lee (2005) build semantic classifiers by merging
data from words in the same semantic class. Once
the class is selected, simple heuristics are applied
to obtain the fine-grained sense. The classifier fol-

lows memory-based learning, and the examples
are weighted according to their semantic similarity
to the target word. Niu et al. (2005) use all-words
training data to build a word-independent model
to compute the similarity between two contexts.
A maximum entropy algorithm is trained with the
all-words corpus, and the model is used for clus-
tering the instances of a given target word. One
of the problems of clustering algorithms for WSD
is evaluation, and in this case they map the clus-
ters to Senseval-3 lexical-sample data by looking
at 10% of the examples in training data. One of
the drawbacks of these systems is that they still
require hand-tagged data.

Parallel corpora have also been widely used
to avoid the need of hand-tagged data. Re-
cently Chan and Ng (2005) built a classifier from
English-Chinese parallel corpora. They grouped
senses that share the same Chinese translation, and
then the occurrences of the word on the English
side of the parallel corpora were considered to
have been disambiguated and “sense tagged” by
the appropriate Chinese translations. The system
was successfully evaluated in the all-words task
of Senseval-2. However, parallel corpora is an
expensive resource to obtain for all target words.
A related approach is to use monolingual corpora
in a second language and use bilingual dictionar-
ies to translate the training data (Wang and Car-
roll, 2005). Instead of using bilingual dictionaries,
Wang and Martinez (2006) tried to apply machine
translation on translating text snippets in foreign
languages back into English and achieved good re-
sults on English WSD.

Regarding portability, methods to automatically
rank the senses of a word given a raw corpus, such
as (McCarthy et al., 2004), have shown good flex-
ibility to adapt to different domains, which is a de-
sirable feature of all-words systems. We will com-
pare the performance of the latter two systems and
our approach in Section 7.

3 Monosemous Relatives method

The “monosemous relatives” approach is a tech-
nique to acquire training examples automatically
and then feed them to a Machine Learning (ML)
method. This algorithm is based on (Leacock et
al., 1998), and follows these steps: (i) select a
set of monosemous words that are related to the
different senses of the target word, (ii) query the
Internet to obtain examples for each relative, (iii)



create a collection of training examples for each
sense, and (iv) use an ML algorithm trained on the
acquired collections to tag the test instances. This
method has been applied in different works (Mi-
halcea, 2002; Agirre and Martinez, 2004). We de-
scribe here the approach by Agirre and Martinez
(2004), which we will apply to the same datasets
as the novel method described in Section 4.

In this implementation, the monosemous rela-
tives are obtained using WordNet, and different
relevance weights are assigned to these words de-
pending on the distance to the target word (syn-
onyms are the closest, followed by immediate hy-
pernyms and hyponyms). These weights are used
to determine an order of preference to construct
the training corpus from the queries, and 1,000 ex-
amples are then retrieved for each query. As ex-
plained in (Agirre and Martinez, 2004), the num-
ber of examples taken for each sense has a big
impact in the performance, and information on
the expected distribution of senses influences the
results. They obtain this information using dif-
ferent means, such as hand-tagged data distribu-
tion (from Semcor), or a prior algorithm like (Mc-
Carthy et al., 2004). In this paper we present the
results of the basic approach that uses all the re-
trieved examples per sense, which is the best stan-
dalone unsupervised alternative.

The ML technique Agirre and Martinez (2004)
applied is Decision Lists (Yarowsky, 1994). In this
method, the sensesk with the highest weighted
feature fi is selected, according to its log-
likelihood (see Formula 1). For this implemen-
tation, they used a simple smoothing method: the
cases where the denominator is zero are smoothed
by the constant 0.1.

weight(sk , fi) = log(
Pr(sk|fi)

∑
j 6=k Pr(sj|fi)

) (1)

The feature set consisted of local colloca-
tions (bigrams and trigrams), bag-of-words fea-
tures (unigrams and salient bigrams), and do-
main features from the WordNet Domains re-
source (Magnini and Cavagliá, 2000). The Deci-
sion List algorithm showed good comparative per-
formance with the monosemous relatives method,
and it had the advantage of allowing hands-on
analysis of the different features.

4 Relatives in Context

The goal of this new approach is to use the Word-
Net relatives and the contexts of the target words
to overcome some of the limitations found in the
“monosemous relatives” technique. One of the
main problems is the lack of close monosemous
relatives for some senses of the target word. This
forces the system to rely on distant relatives whose
meaning is far from the intended one. Another
problem is that by querying only with the relative
word we do not put any restrictions on the sen-
tences we retrieve. Even if we are using words
that are listed as monosemous in WordNet, we can
find different usages of them in a big corpus such
as Internet (e.g. Named Entities, see example be-
low). Including real contexts of the target word in
the queries could alleviate the problem.

For instance, let us assume that we want to clas-
sify church with one of the 3 senses it has in
Senseval-2: (1) Group of Christians, (2) Church
building, or (3) Church service. When querying
the Internet directly with monosemous relatives of
these senses, we find the following problems:

• Metaphors: the relativecathedral(2nd sense)
appears in very different collocations that are
not related to any sense ofchurch, e.g. the
cathedral of football.

• Named entities: the relativekirk (2nd sense),
which is a name for a Scottish church, will
retrieve sentences that use Kirk as a proper
noun.

• Frequent words as relatives: relatives likehe-
braism (1st sense) could provide useful ex-
amples, but if the query is not restricted can
also be the source of many noisy examples.

The idea behind the “relatives in context”
method is to combine local contexts of the target
word with the pool of relatives in order to obtain
a better set of examples per sense. Using this ap-
proach, we only gather those examples that have a
close similarity with the target contexts, defined by
a set of pre-defined features. We will illustrate this
with the following example from the Senseval-2
dataset, where the goal is to disambiguate the word
church:

The church was rebuilt in the 13th
century and further modifications and
restoration were carried out in the 15th
century.



We can extract different features from this con-
text, for instance using a dependency parser. We
can obtain that there is a object-verb relation be-
tween church and rebuild. Then we can incor-
porate this knowledge to the relative-based query
and obtain training examples that are closer to our
target sentence. In order to implement this ap-
proach with rich features we require tools that al-
low for linguistic queries, such as the linguist’s en-
gine (Resnik and Elkiss, 2005), but other approach
would be to use simple features, such as strings of
words, in order to benefit directly from the exam-
ples coming from search engines in the Internet.
In this paper we decided to explore the latter tech-
nique to observe the performance we can achieve
with simple features. Thus, in the example above,
we query the Internet with snippets such as “The
cathedralwas rebuilt” to retrieve training exam-
ples. We will go back to the example at the end of
this section.

With this method we can obtain a separate train-
ing set starting from each test instance and the pool
of relatives for each sense. Then, a ML algorithm
can be trained with the acquired examples. Al-
ternatively, we can just rank the different queries
according to the following factors:

• Length of the query: the longer the match,
the more similar the new sentence will be to
the target.

• Distance of the relative to the target word: ex-
amples that are obtained with synonyms will
normally be closer to the original meaning.

• Number of hits: the more common the snip-
pet we query, the more reliable.

We observed a similar performance in prelim-
inary experiments when using a ML method or
applying an heuristic on the above factors. For
this paper we devised a simple algorithm to rank
queries according to the three factors, but we plan
to apply other techniques in the acquired training
data in the future.

Thus, we build a disambiguation algorithm that
can be explained in the following four steps:

1. Obtain pool of relatives: for each sense
of the target word we gather its synonyms, hy-
ponyms, and hypernyms. We also take polyse-
mous nouns, as we expect that in similar local con-
texts the relative will keep its related meaning.

2. Construct queries: first we tokenise each tar-
get sentence, then we apply sliding windows of
different sizes (up to 6 tokens) that include the tar-
get word. For each window and each relative in the
pool, we substitute the target word for the relative
and query the Internet. Then we store the number
of hits for each query. The algorithm stops aug-
menting the window for the relative when one of
its substrings returns zero hits.

3. Ranking of queries: we devised a simple
heuristic to rank the queries according to our in-
tuition on the relevant parameters. We chose these
three factors (in decreasing order of relevance):

• Number of tokens of the query.

• Type of relative: preference order: (1) syn-
onyms, (2) immediate hyponyms, (3) imme-
diate hypernyms, and (4) distant relatives.

• Number of hits: we choose the query with
most hits. For normalisation we divide by the
number of hits of the relative alone, which
penalises frequent and polysemous relatives.

We plan to improve this ranking approach in the
future, by learning the best parameter set on a de-
velopment corpus. We also would like to gather a
training corpus from the returned documents and
apply a ML classifier.

4. Assign the sense of the highest ranked query:
another alternative that we will explore in the fu-
ture is to vote among the k highest ranked queries.

We will show how the algorithm works with
the example for the target wordchurchpresented
above. Using the relatives (synonyms, hypernyms,
and hyponyms) of each sense and the local con-
text we query the Internet. The list of the longest
matches that have at least 2 hits is given in Table 1.
In this case the second sense would be chosen be-
cause the wordsnave, abbey, andcathedral indi-
cate this sense. In cases where the longest match
corresponds to more than one sense the closest rel-
ative is chosen; if there is still a tie the number of
hits (divided by the number of hits of the relative
for normalisation) is used.

5 Experimental setting

For our experiments we relied on the lexical-
sample datasets of both Senseval-2 (Kilgarriff,
2001) and Senseval-3 (Mihalcea et al., 2004). We



Query Sense
Thenavewas rebuilt in the 13th century 2
Theabbeywas rebuilt in the 13th century 2
Thecathedralwas rebuilt in the 13th century 2
TheCatholic Churchwas rebuilt in 1
TheChristian churchwas rebuilt 1
Thechurch servicewas 3
Thereligious servicewas 3

Table 1: Longest matches for relative words of
church in the Senseval-2 example “The church
was rebuilt in the 13th century and further mod-
ifications and restoration were carried out in the
15th century.”.

will refer to these sets as S2LS and S3LS re-
spectively. This approach will give us the chance
to measure the performance on different sets of
words, and compare our results to the state of the
art. We will focus on nouns in this work, in order
to better study the specific problems to be anal-
ysed in the error analysis. The test sets consist
on 29 nouns in S2LS, and 20 nouns in S3LS. The
sense inventory in S2LS corresponds to WordNet
1.7 (pre-release), while for S3LS the senses belong
to WordNet 1.7.1.

Our main goal is to build all-words WSD sys-
tems, and this preliminary test on lexical-sample
datasets will give us a better idea of the perfor-
mance we can expect. The same algorithms can be
used for extending the evaluation to all the words
in context by considering each target word sepa-
rately. We plan to carry out this evaluation in the
near future.

Regarding evaluation, we used the scoring soft-
ware provided by the Senseval organisation to
measure the precision and recall of the systems.
Precision refers to the ratio of correct answers to
the total number of answers given by the system,
and recall indicates the ratio of correct answers to
the total number of instances. All our algorithms
have full coverage (that is, they always provide an
answer), and therefore precision equals recall. In
some cases we may present the results per sense,
and then the precision will refer to the ratio of cor-
rect answers to the number of answers given to the
sense; recall will be the ratio of correct answers to
the number of test instances linked to the sense.

6 Results

The results of applying the “monosemous rela-
tives” (MR) and the “relatives in context” (RC) al-
gorithm are shown in Table 2. The micro-averaged

S2LS S3LS
Word MR RC Word MR RC
art 61.1 40.3 argument 24.7 38.7
authority 22.0 45.1 arm 10.2 27.1
bar 52.1 16.9 atmosphere 31.3 24.7
bum 18.8 72.5 audience 51.8 34.0
chair 62.9 54.8 bank 32.3 60.6
channel 28.7 27.9 degree 39.3 43.8
child 1.6 46.8 difference 26.4 23.7
church 62.1 58.1 difficulty 13.0 43.5
circuit 52.8 47.2 disc 52.2 45.0
day 2.2 36.7 image 4.1 23.0
detention 16.7 62.5 interest 26.8 23.1
dyke 89.3 85.7 judgment 20.6 25.0
facility 26.8 50.0 organization 71.4 69.6
fatigue 73.8 67.5 paper 25.6 42.7
feeling 51.0 49.0 party 67.5 67.2
grip 8.0 26.0 performance 20.5 33.3
hearth 37.5 40.6 plan 78.0 76.2
holiday 7.4 74.1 shelter 36.2 44.9
lady 79.3 8.7 sort 13.5 65.6
material 50.8 50.8 source 22.4 53.1
mouth 41.2 43.9
nation 80.6 36.1
nature 44.4 26.7
post 47.4 36.2
restraint 9.1 22.7
sense 18.6 48.8
spade 66.1 32.3
stress 52.6 21.1
yew 85.2 55.6
Avg S2 39.9 41.5 Avg S3 34.2 43.2
Avg S2-S3 36.8 42.4

Table 2: Recall of the “Monosemous Relatives”
method (MR) and the “Relatives in Context” (RC)
technique in the two Senseval datasets. Best re-
sults per word in bold.

results show that the new method clearly outper-
forms the monosemous relatives in this dataset.
However, we can also notice that this improve-
ment does not happen for all the words in the
set. One of the problems of unsupervised sys-
tems is that they are not able to perform robustly
for all words, as supervised can do because of the
valuable information contained in the hand-tagged
corpora. Thus, we normally see different perfor-
mances depending on the type of words in the tar-
get set, which suggest that the best way to raise
unsupervised performance is the combination of
algorithms, as we will see in Section 7.

Even if an all-words approach gives a better
idea of the performance of different techniques,
the Senseval lexical-sample dataset tries to include
words with different degrees of polysemy and fre-
quency in order to provide a balanced evalua-
tion. We also show in Section 7 the performance
of other techniques previously described in Sec-



S. Definition
1 beginning, origin, root, rootage - the place where

something begins
2 informant - a person who supplies information
3 reference - a publication (or a passage from

a publication) that is referred to
4 document (or organization) from which information

is obtained
5 facility where something is available
6 seed, germ - anything that provides inspiration for

later work
7 generator, author - someone who originates

or causes or initiates something

Table 3: Sense inventory forsourcein WordNet
1.7.1.

tion 2.

Sometimes it is worth to “eyeball” the real ex-
amples in order to get insight on the algorithms.
For that, we chose the wordsourcein the S3LS
dataset, which clearly improves its performance
with the new method. This word has 7 senses
in WordNet 1.7.1, shown in Table 3. The Sen-
seval grouping provided by the organisation joins
senses 3 and 4, leaving each of the others as sep-
arate groups. The coarse inventory of senses has
been seen as an alternative to fine-grained WSD
(Ciaramita and Altun, 2006).

For this word, we see that the “monosemous rel-
atives” approach achieves a low recall of 22.4%.
Analysing the results per sense, we observed that
the precision is good for sense 1 (90%), but the re-
call is as low as 4.7%, which indicates that the al-
gorithm misses many of the instances. The drop in
performance seems due to the following reasons:
(i) close monosemous relatives found for sense 1
are rare (direct hyponyms such as “headspring”
or “provenance” are used), and (ii) far and highly
productive relatives are used for senses 2 and 7,
which introduce noise (e.g. the related multiword
“new edition” for sense 7). In the case of the “rela-
tives in context” algorithm, even if we have a sim-
ilar set of relatives per each sense, the local con-
text seems to help disambiguate better, achieving a
higher recall of 53.1%. In this case the first sense,
which is the most frequent in the test set (with 65%
of the instances), is better represented and this al-
lows for improved recall.

Following with the target wordsource, we
picked a real example from the test set to see the
behaviour of the algorithms. This sentence was
hand-tagged with sense 1, and we show here a
fragment containing the target word:

...tax will have been deducted atsource,
and this will enable you to sign a Cer-
tificate of Deduction...

The monosemous relatives method is not able to
find good collocations in the noisy training data,
and it has to rely in bag-of-word features to make
its decision. These are not usually as precise as
local collocations, and in the example they point to
senses 1, 2, and 4. The scorer gives only 1/3 credit
to the algorithm in this case. Notice that one of the
advantages of using Decision Lists is that it allows
us to have a closer look to the features that are
applied in each decision. Regarding the “relatives
in context” method, in this example it is able to
find the correct sense relying in collocations such
asdeducted at originanddeducted at beginning.

7 Comparison with other systems

In this section we compared our results with some
of the state-of-the-art systems described in Sec-
tion 2 for this dataset. We chose the Automatic
Ranking of Senses by (McCarthy et al., 2004),
and the Machine Translation approach by (Wang
and Martinez, 2006). These unsupervised sys-
tems were selected for a number of reasons: they
have been tested in Senseval data with good per-
formance, the techniques are based on different
knowledge sources, and the results on Senseval
data were available to us. We also devised a simple
unsupervised heuristic that would always choose
the sense that had a higher number of close rel-
atives in WordNet, picking randomly when there
was a tie. We tested this approach in previous
work (Wang and Martinez, 2006) and it showed
to work well for discarding rare senses. We ap-
plied it here as a standalone system. We do not
include the results of supervised systems because
they can benefit strongly from ready-made hand-
tagged data, which is not normally available in a
real setting.

The performance of the three systems, together
with the previous two, is given in Table 4. We
can see that overall the Automatic ranking ap-
proach (RK) gives the best performance, with al-
most the same score as our Relatives in Context
(RC) approach. The Machine Translation (MT)
method performs 2 points lower overall, but its re-
call is balanced in the two different datasets. Sur-
prisingly, the simple Number of Relatives (NR)
heuristic does better than the Monosemous Rela-
tives (MR), performing specially well in the S3LS



Algorithm Avg S2LS Avg S3LS Avg S2LS-S3LS
RK 39.0 45.5 42.5
MT 40.8 40.7 40.7
NR 33.6 43.0 38.7
RC 41.5 43.2 42.4
MR 39.9 34.2 36.8

Table 4: Recall of different algorithms on Sense-
val datasets. Best results per column in bold. RK:
Automatic Ranking of Senses, MT: Translation-
based, NR: Number of Relatives heuristic, RC:
Relatives in Context, MR: Monosemous Relatives.

dataset.

We can now analyse the performance of the five
systems per word. The results are given in Ta-
ble 5. We can see that the choice of the target
word heavily affects the results of the algorithms,
with most of them having very low results for a
handful of words, with recall below 20% and even
10%. These very low results make a difference
when compared to supervised systems, which do
degrade gracefully. None of the algorithms is ro-
bust enough to achieve an acceptable performance
for all words.

Measuring the agreement of the different al-
gorithms is a way to know if a combined sys-
tem would improve the results. We calculated
the kappa statistic, which has been widely used in
NLP tasks (Carletta, 1996), to measure the agree-
ment on the answers of the algorithms in S2LS
and S3LS (cf. Table 6). The table shows the
averaged results per word of the S2LS dataset in
the upper-right side, and the S3LS values in the
bottom-left side. We can see that all the results are
closer to 0 than 1, indicating that they tend to dis-
agree, and suggesting that the systems offer good
prospects for combination. The highest agreement
is attained between methods RK and NR in both
datasets, and the lowest between RC and MT.

In order to study the potential for combination,
we tried the simplest method, that of one system
one vote, where each system returns a single vote
for the winning sense, and the sense getting most
votes wins. In case of ties, all the senses get-
ting the same number of votes are returned. Note
that the Senseval scorer penalises systems return-
ing multiple senses (unless all of them are correct).

The results of the ensemble and also of leaving
one system out in turn are given in Table 7. The
table shows that the best combination (in bold) for
each of the datasets varies, which is natural given

Algorithms
Words

MR RC MT RK NR
art 61.1 40.3 47.2 61.1 61.1
authority 22.0 45.1 17.6 37.4 37.4
bar 52.1 16.9 44.1 14.4 14.4
bum 18.8 72.5 80.0 85.0 7.5
chair 62.9 54.8 85.5 88.7 88.7
channel 28.7 27.9 47.1 10.3 2.9
child 1.6 46.8 35.5 43.5 56.5
church 62.1 58.1 32.3 40.3 40.3
circuit 52.8 47.2 54.7 43.4 43.4
day 2.2 36.7 32.4 1.4 4.3
detention 16.7 62.5 79.2 87.5 12.5
dyke 89.3 85.7 67.9 89.3 89.3
facility 26.8 50.0 17.9 26.8 26.8
fatigue 73.8 67.5 67.5 82.5 82.5
feeling 51.0 49.0 16.3 59.2 59.2
grip 8.0 26.0 14.0 16.0 8.0
hearth 37.5 40.6 56.2 75.0 75.0
holiday 7.4 74.1 11.1 7.4 96.3
lady 79.3 8.7 45.7 10.9 10.9
material 50.8 50.8 19.5 15.3 15.3
mouth 41.2 43.9 41.2 56.1 56.1
nation 80.6 36.1 37.5 80.6 19.4
nature 44.4 26.7 22.2 17.8 21.1
post 47.4 36.2 37.9 43.1 43.1
restraint 9.1 22.7 13.6 18.2 9.1
sense 18.6 48.8 37.2 11.6 11.6
spade 66.1 32.3 67.7 67.7 3.2
stress 52.6 21.1 55.3 50.0 2.6
yew 85.2 55.6 85.2 81.5 81.5
argument 24.7 38.7 45.9 51.4 21.6
arm 10.2 27.1 71.4 82.0 44.0
atmosphere 31.3 24.7 45.7 66.7 66.7
audience 51.8 34.0 57.0 67.0 67.0
bank 32.3 60.6 37.1 67.4 67.4
degree 39.3 43.8 41.4 22.7 16.4
difference 26.4 23.7 32.5 40.4 16.7
difficulty 13.0 43.5 26.1 34.8 34.8
disc 52.2 45.0 58.0 27.0 27.0
image 4.1 23.0 21.6 36.5 36.5
interest 26.8 23.1 31.2 41.9 11.8
judgment 20.6 25.0 40.6 28.1 28.1
organization 71.4 69.6 19.6 73.2 73.2
paper 25.6 42.7 30.8 23.1 25.6
party 67.5 67.2 52.6 6.9 62.1
performance 20.5 33.3 46.0 24.1 26.4
plan 78.0 76.2 29.8 82.1 82.1
shelter 36.2 44.9 39.8 33.7 44.9
sort 13.5 65.6 20.8 65.6 65.6
source 22.4 53.1 9.4 0.0 65.6
Wins 11 12 8 22 18
Average 36.8 42.4 40.7 42.5 38.7

Table 5: Recall of the 5 algorithms per word and
in average, the best results per word are given in
bold. The top rows show the S2LS words, and the
bottom rows the S3LS words.

the variance of each of the single systems, and that
the combination of all 5 systems attains very good
performance on both datasets.

In the lower lines, Table 7 shows a number of
reference systems: the best unsupervised system
that took part in each of the S2LS and S3LS com-



Algorithm MR RC MT RK NR
MR - 0.23 0.28 0.41 0.43
RC 0.13 - 0.13 0.31 0.30
MT 0.11 0.09 - 0.23 0.35
RK 0.33 0.25 0.26 - 0.45
NR 0.23 0.15 0.28 0.36 -

Table 6: Averaged kappa agreement between pairs
of algorithms. Results on the S2LS dataset are
given in the upper-right side, and the S3LS values
in the bottom-left side.

System S2LS S3LS
All 42.3 51.0
Leave MR out 41.7 52.1
Leave RC out 40.3 48.3
Leave MT out 40.0 47.5
Leave RK out 44.5 46.7
Leave NR out 45.9 49.9
Best Senseval unsup 35.8 47.5
Best single system 41.5 45.5
Oracle 80.4 84.3

Table 7: Voting systems, best unsupervised sys-
tems, best single systems, and oracle on S2LS and
S3LS.

petitions, and the best single system in each of the
datasets2. The combination of the 5 systems is
able to beat all of them in both datasets, showing
that the simple voting system was effective to im-
prove the single systems and attain the best totally
unsupervised system in this dataset. We can also
see that the novel technique described in this paper
(RC) contributes to improve the ensemble in both
datasets. This does not happen for the monose-
mous relatives approach, which degrades perfor-
mance in S3LS.

As an upperbound, we also include the oracle
combination in Table 7, which determines that an
instance has been correctly tagged if any of the al-
gorithms has got it right. This oracle shows that
the union of the 5 systems cover 80.4% and 84.3%
of the correct solutions for each of the datasets,
and that there is ample room for more sophisti-
cated combination strategies.

8 Conclusions and Future work

The current situation for WSD is somewhat stuck
due to lack of training data. We present in this
paper a novel disambiguation algorithm that im-
proves previous systems based on the acquisition

2For nouns the best scores of the competing sys-
tems were obtained by dictionary-based systems in both
S2LS (Litkowski, 2001), and S3LS (Pedersen, 2004).

of examples by incorporating local context infor-
mation. With a basic configuration, our method is
able to obtain state-of-the-art performance.

We complemented this work by evaluating other
well-known methods in the same dataset, and
analysing the comparative results per word. We
observed that each algorithm performed better for
different types of words, and each of them failed
for some particular words. We then proposed a
simple unsupervised voting scheme that improved
significantly over single systems, achieving the
best performance on both the Senseval 2 and Sen-
seval 3 lexical sample datasets.

We have also shown that there is ample room
for improvement, as the oracle combination sets
an upperbound of around 80% for a perfect com-
bination. This work naturally leads to explore
more sophisticated combination strategies, using
meta-learning to try to understand which features
of each word make a certain WSD system suc-
ceed (or fail). We would also like to widen the
range of systems, either using existing unsuper-
vised off-the-shelf WSD systems and/or reimple-
menting them.

Regarding the “Relatives in Context” method,
there are different avenues to explore. We plan
to use this approach to acquire automatic sense
tagged data for training, instead of relying on
rules. We also would like to study the use of richer
features than the local strings to acquire examples
that have similar linguistic structures.

Finally, we want to test the new technique on an
all-words corpus. A simple approach would be to
process each instance of each word separately as
in the lexical sample. However, we could also try
to disambiguate all words in the context together,
by substituting the target words with their relatives
jointly. We are comparing our unsupervised sys-
tems in the testbeds where supervised systems are
comfortable (lexical-sample tasks). We think that
unsupervised systems can have the winning hand
in more realistic settings like those posed by Sen-
seval all-words tasks.
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