
Porting Basque Morphological Grammars to
foma, an Open-Source Tool

Iñaki Alegria1, Izaskun Etxeberria1, Mans Hulden2, and Montserrat
Maritxalar1

1 IXA group
University of the Basque Country

i.alegria@ehu.es
2 University of Arizona

Department of Linguistics
mhulden@email.arizona.edu

Abstract. Basque is a morphologically rich language, of which several
finite-state morphological descriptions have been constructed, primarily
using the Xerox/PARC finite-state tools. In this paper we describe the
process of porting a previous description of Basque morphology to foma,
an open-source finite-state toolkit compatible with Xerox tools, provide
a comparison of the two tools, and contrast the development of a two-
level grammar with parallel alternation rules and a sequential grammar
developed by composing individual replacement rules.

1 Introduction

In this paper we describe some aspects of the design of a Basque morphologi-
cal processing system built with finite-state techniques. Since we have recently
ported a Basque morphological grammar from the Xerox formalism to the open-
source foma toolkit (Hulden, 2009), we shall focus on aspects and experiences
highlighted by this process. In light of this migration to an open source toolkit,
which forced us to convert an older two-level description of the morphology to an
equivalent sequential rule-based one, we shall also contrast some practical design
aspects of two-level grammars (Koskenniemi, 1983; Karttunen et al., 1987) with
so-called sequential replacement rule grammars (Kaplan and Kay, 1994; Beesley
and Karttunen, 2003).

2 Basque morphology

Basque is an agglutinative language with a rich morphology. Earlier descriptions
of Basque morphological analysis with finite-state techniques include Aldeza-
bal et al. (1994); Alegria et al. (1996). A later implementation using the Xe-
rox/PARC compilers is described in Alegria et al. (2002).

From the point of view of designing a complete description of Basque mor-
phology, the most prominent and features of the language include:

– Basque morphology is very rich. The determiner, the number and the declen-
sion case morphemes are appended to the last element of the noun phrase
and always occur in this order.

– Basque nouns belong to a single declension; the 15 case markers are invariant.
– Functions that prepositions normally fulfill are realized by case suffixes in-

side word-forms. Basque offers the possibility of generating a large number of
inflected word-forms. From a single noun entry, a minimum of 135 inflected
forms can be generated. While 77 of these are simple combinations of num-
ber, determiners, and case markings (and not capable of further inflection),
the rest (58) include one of the two possible genitive markers (possessive
and locative) and they can create new declension cases. With this in mind,
Basque can be called an agglutinative language.

– Basque has ergative case, which marks the subjects of transitive verbs. Lin-
guistic theories and nomenclature about this phenomenon are varying: some
use the terminology ‘ergative language,’ and others ‘non-accusative.’

– The verb provides all the grammatical and agreement information about
the subject, the two possible objects, as well as tense and aspect-related
information, etc.

3 Earlier work and current migration to open source

The earlier two-level descriptions referred to above have been used in different
applications, for example in a spell checker and corrector named Xuxen,3 which is
widely used among Basque speakers. In addition to the standard morphological
description, additional finite-state transducers that extend the basic grammar
and is useable for other tasks have been built (Alegria et al., 2002). These are:

– A standard analyzer that includes normalized morphemes and standard
phonological rules.

– An enhanced analyzer for the analysis and normalization of linguistic vari-
ants (modeling dialectal usage and competence errors). This is a critical tool
for languages like Basque in which standardization is recent and dialectal
lexical and phonological variants are common and widespread.

– A ‘guesser,’ or analyzer for words which have no lemma listing in the lexicon.
For this, the standard transducer is simplified and the lexical entries in the
open categories (nouns, proper names, adjectives, verbs, etc.) are removed.
These entries, which constitute the vast majority of the lexicon, are substi-
tuted by a general automaton that accepts any combination of characters in
the orthography, subject to some phonological constraints.

Migration to open source technology of the various finite-state-based gram-
mars for Basque that have been developed is still an ongoing process. Much of
what has been accomplished so far has been done in a semi-automatic way; some
of this work is described in e.g. Alegria et al. (2008).

3 http://www.xuxen.com

For open-source spell checking and correction applications, we have used
hunspell (Nemeth et al., 2004), since hunspell is directly supported in the later
versions of OpenOffice and Mozilla/Firefox. However, hunspell is limited in its
descriptive power. It is, for instance, not possible to express phonological alter-
nations independently of the lexicon, which results in that the conversion from
the original transducer-based descriptions is not at all straightforward.

For this reason, we have also experimented with the internal support foma
provides for spell checking and spelling correction applications based on finite
automata, and plan to incorporate this in the array of finite-state based appli-
cations for Basque already available.

4 Porting Basque grammars to foma

The original source description of the Basque (Alegria et al., 1996) was compiled
with the the Xerox toolkit (Beesley and Karttunen, 2003), using a number of the
formalisms that it supports. The lexicon specification language, lexc, was used
for modeling the lexicon and constraining the morphotactics, and the two-level
grammar language, twolc, was used for constructing a transducer that models
the phonological and orthographical alternations in Basque.

As foma provides no method for compiling two-level rules, the first step in
the migration consisted of translating the rules formerly compiled with twolc
to the form of replacement rules supported by foma—largely identical to the
rules supported by xfst. The original description of the Basque morphology was
built prior to the introduction of publicly available tools to manipulate and
compile sequentially composed replacement rules, and thus followed the two-
level formalism.

We were also aware of the fact that there has been a recent shift in preference
toward favoring sequential replacement rules rather than two-level rules in the
design of morphological parsers (Beesley and Karttunen, 2003). This was part of
the motivation for our decision to explore the replacement rule paradigm when
reimplementing our grammars with open-source tools.

Porting grammars from one formalism to another one is an interesting prob-
lem for which there are few resources to be found in the literature. This is
especially true in the case of sequentially composed replacement rules and the
two-level formalism. Grammars written in either of the two are of course compi-
lable into finite-state transducers and are therefore equivalent in a sense, which
in turn should motivate a comparison between the two from the point of view
of the grammar developer. The most prominent aspects of such a comparison
should include differences in grammar size and grammar complexity, ease and
clarity of rules and rule interactions as well as ease of debugging rules.

In table 1 we illustrate a simple case of debugging two-level grammars as op-
posed to debugging sequential rule grammars. A large part of the work involved
in developing a two-level grammar consists of avoiding rule conflicts. Here, we
have two rules in (a) that constrain the realization of k: the first rule dictates that
k should elide before consonants while the second rule states that it shall become

voiced following a consonant. The first rule is exemplified by underlying-surface
pair forms such as horiektan:horietan, while the second handles alternations
such as eginko:egingo. Unfortunately, as stated, the two rules conflict as there
is no unequivocal statement about what a k should correspond to in case it
occurs with a consonant on both sides. Additional information needs to be pro-
vided for the proper compilation of the grammar, often in the form restating the
two rules with more complex and restricted contextual parts. By contrast, the
ordered rules in (b), where the elision rule is assumed to apply before the voic-
ing rule, give the correct forms without a need for additional specification about
what occurs in cases where the contexts overlap. In many cases this kind of an
approach allows one to design an ordered rewrite rule grammar in a more iso-
lated way such that each rule targets one phonological generalization only—such
as elision or devoicing—without mixing information from two arguably separate
phenomena in both rules.

(a)

k:0 <=> _ Cons

k:g <=> Cons _

(b)

k -> 0 || _ Cons

k -> g || Cons _

Table 1. Simple rule conflict cases which often resolve automatically when implemented
as ordered rules.

In table 2 we provide an example of the differences between both descriptions.
The example rules illustrate a number of phenomena. In Basque, the prefix
ber can precede verbal roots. Before a vowel, the final character (r) of this
prefix is doubled, but before a consonant the ber prefix changes into bir. In
addition to this, if the first character of the root is h, this h disappears. If the
prefix is expressed as beR (indicating a hard r) the chain beR+egin (a lexical
expression) generates berregin, while beR+gai+tu generates birgaitu, and
beR+has+i changes into berrasi.

In our experience, the sequential rules provided conceptual simplicity and
were easier to debug than two-level rules. This was largely because one can
avoid complex interactions in rules and their contexts of application, which in
general one cannot when designing a two-level grammar. However, the order of
the rules needs to be designed carefully, which is also a nontrivial problem.

4.1 Conversion procedure

In converting the rules, we decided to follow a simple strategy. First, rules
with limited contextual requirements (single-symbol simple contexts) were trans-

parallel rules

(a)

R:r <=> _

+:0 <=> _

h:0 <=> # b e R:r 0:r +:0 _ Vowel

0:r <=> R:r _ +:0 (h:0) Vowel

e:i <=> # b _ R +:0 Cons

sequential rules

(b)

h -> 0 || # b e R + _ Vowel

0 -> r || R _ + Vowel

e -> i || # b _ R + Cons

R -> r

+ -> 0

Table 2. Simplified comparison between parallel and sequential rules in Basque mor-
phology.

formed into sequential rules. Also, rules that were very specific in their condi-
tioning environments (such as those interacting with only one particular prefix)
were converted.

Following this step, rules making use of information not available at the sur-
face level—abstract morphophonemes, diacritic symbols, or complex morpholog-
ical information—were resolved. These rules fell naturally into the early parts of
the chain of compositions since diacritics and abstract symbols could be deleted
and would no longer be available for subsequent rules. In a way, the strategy
was to move step by step from the lexical level of abstract diacritic symbols and
morphophonemes toward the actual surface words.

The most complex rules—those with multiple contexts and interactions with
other rules—were placed at the end. These include rules such as e-epenthesis, r -
epenthesis, and enforcing a final a in the lemmas. Within this last block of rules,
the internal ordering of the rules was also much more important and required
more care in the design process.

During each of the above conversion steps, examples from the previously used
two-level system were used for testing.

After converting the two-level description to context-dependent replacement
rules, porting the description to foma was straightforward because the lexc
description is fully compatible. Two experiments were carried out: the first
morphology-oriented with the whole lexicon containing the full morphological
description of all the morphemes (including category, case, tense, person, etc.)
and the second spelling-oriented with only the lexical description of the mor-
phemes (surface level and indispensable marks for the rules). In both descriptions
the same phonological rules were used.

After this, more thorough testing and debugging was performed. We applied
the two morphological analyzers (the original two-level one and the new one) to

a corpus of 80,000 different word forms to find discrepancies by running the unix
tool diff on the results.

In the end, we managed to reduce the discrepancies to only one analysis of
one word, which was then found to be a mistake in the lexicon grammar. The
lexicon had omitted a hard R for place names (all final R’s in place names are
hard in Basque).

Some auxiliary applications, such as a spelling corrector module, had already
been developed in the xfst replacement rule paradigm after the original two-level
morphological grammar, and thus no conversion was required for constructing
these transducers in foma as it compiled the original xfst rules to identical trans-
ducers as the Xerox tools.

4.2 Compatibility and efficiency

In porting the Xerox-based grammatical descriptions to foma, we noted very
few discrepancies in compatibility. Foma has no separate program for extensive
debugging of lexicon specifications in the lexc format, but is able to import lexc
descriptions through the main interface. Our earlier lexicons were thus imported
without changes, and compiled to identical transducers as with Xerox’s lexc:
2,321,693 states and 2,466,071 arcs for our more detailed lexicon, and 63,998
states and 136,857 arcs for the less detailed one. Compiling the complete system
which requires compiling the lexicon (89,663 entries), compiling 77 replacement
rules, and composing all of these separate transducers under lexc and xfst took
28.96s,4 and 15.39s with foma,5 on a 2.93GHz Pentium 4 computer with 2Gb
memory running Linux. Foma, however required far more temporary memory
for compilation—a peak usage of 788.2 Mb which occurred while compiling the
larger lexicon—while lexc used a maximum 161.2 Mb for the same task.

5 Auxiliary applications: spelling correction

One of the approaches to capture certain kinds of spelling errors for Basque
has been to identify predictable and often occurring types of misspellings and
suggest corrections for these. Because of the fairly recent standardization of
the orthography, and because of the amount of dialectal variation in Basque,
cognitive errors of this type are not uncommon, and it is important for a spelling
corrector to identify these errors accurately.

One of the components of the Basque morphological system is a transducer
that encodes a set of 24 hand-coded string perturbation rules reflecting errors
commonly found in Basque writing, such as confusing a z and and c, an x and a z,
and so on. This transducer is composed with an automaton encoding the possible
surface forms of the morphology, providing a markup of possible misspellings,
which is then composed with a filter that accepts only those misspellings that

4 xfst-2.10.29 (cfsm 2.12.29), and lexc-3.7.9 (2.12.29)
5 version 0.9.6alpha.

match a word in the lexicon (see Fig. 1). This error correction mechanism was
originally modeled with xfst replacement rules, and so was directly portable to
foma, and usable as such.

zihurra [input word]

Correction markup

FST

zihurra
zi/OH/urra
s/SZ/ihurra
x/XZ/ihurra
x/XZ/i/OH/urra
c/CZ/ihurra
c/CZ/i/OH/urra

FST

ziurra [corrected word]

Morph Filter

Fig. 1. An illustration of the functioning for the part of the spelling corrector that rec-
ognizes typical orthographical errors. A correction markup filter nondeterministically
changes the input to a number of possible candidate errors, after which the morpholog-
ical filter retains only those that are actual words.

5.1 Internal support for spelling correction in foma

A recent addition to the foma toolkit and API is an algorithm for quickly finding
approximate matches to an input word and an automaton. The default metric of
distance is the Levenshtein distance, i.e. minimum edit distance where character
substitutions, deletions, and insertion all have a cost of 1 unit. However, foma
also provides the possibility of defining separate costs for different types of string
perturbation operations.

This feature is convenient in that one automatically has a spelling correc-
tor available, given a morphological analyzer. In our experiments with foma, we
have simply extracted the range (lower side in the terminology of Beesley and
Karttunen (2003)) of our morphological analyzer transducer, producing a cyclic
finite-state automaton which encodes all the words that have a legitimate mor-
phological analysis in the original system, directly producing a spelling corrector
application.

We have also done some preliminary experiments in modeling the cognitive
errors described above, by specifying an additional weight confusion matrix to
foma’s minimum edit distance algorithm, giving each of the 24 string perturba-
tion operations in our earlier separate finite-state correction grammar a low cost
(1 unit), and other operations the cost (2 units), yielding an spelling corrector

application very similar to the earlier hand-built one, although much easier to
construct.

An example of the interactive spelling correction is given in Fig. 2. In the
future we hope to automatically derive the weights for different edit operations
for increased accuracy, and integrate the spell checker and spelling corrector
using foma’s C language API to other applications, such as OpenOffice and
Mozilla/Firefox.

foma[0]: regex MORPHO.l;

80512 states, 346119 arcs, Cyclic.

foma[1]: apply med

Using confusion matrix [Euskara]

apply med> zihurra

ziurra Cost[f]: 1

zimurra Cost[f]: 2

zigurra Cost[f]: 2

zuhurra Cost[f]: 2

bihurra Cost[f]: 2

Fig. 2. Applying the minimum edit distance finder of foma produces spelling correction
suggestions like those of our hand coded rules seen in Fig. 1, given a similar specification
in the form of a confusion matrix.

6 Conclusion

We have described a segment of an ongoing process to migrate Basque natural
language processing tools to open-source technology—that of porting a wide-
coverage morphological description of the language to compile with the foma
toolkit. This entailed rewriting a formerly two-level grammar into sequential
replacement rules. We also hope to address the porting of other applications—
such as a spelling corrector—with foma.

7 Acknowledgements

The first author has been partially funded by the Spanish Ministry of Education
and Science (OpenMT: Open Source Machine Translation using hybrid methods,
TIN2006-15307-C0301). We wish to thank the anonymous reviewers for helpful
comments and suggestions.

Bibliography

Aldezabal, I., Alegria, I., Artola, X., Dı́az de Ilarraza, A., Ezeiza, N., Gojenola,
K., and Urkia, M. (1994). EUSLEM: Un lematizador/etiquetador de textos
en Euskara. In Actas del X. Congreso de la SEPLN Córdoba.

Alegria, I., Aranzabe, M., Ezeiza, A., Ezeiza, N., and Urizar, R. (2002). Us-
ing finite state technology in natural language processing of Basque. LNCS:
Implementation and Application of Automata, 2494.

Alegria, I., Artola, X., Sarasola, K., and Urkia, M. (1996). Automatic morpho-
logical analysis of Basque. Literary & Linguistic Computing, 11(4):193–203.

Alegria, I., Ceberio, K., Ezeiza, N., Soroa, A., and Hernandez, G. (2008). Spelling
correction: from two-level morphology to open source. In Calzolari, N.,
Choukri, K., Maegaard, B., Mariani, J., Odjik, J., Piperidis, S., and Tapias,
D., editors, Proceedings of the Sixth International Language Resources and
Evaluation (LREC’08), Marrakech, Morocco. European Language Resources
Association (ELRA).

Beesley, K. and Karttunen, L. (2003). Finite-State Morphology. CSLI, Stanford.
Hulden, M. (2009). Foma: a finite-state compiler and library. In EACL 2009

Proceedings, pages 29–32.
Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems.

Computational Linguistics, 20(3):331–378.
Karttunen, L., Koskenniemi, K., and Kaplan, R. M. (1987). A compiler for

two-level phonological rules. In Dalrymple, M., Kaplan, R., Karttunen, L.,
Koskenniemi, K., Shaio, S., and Wescoat, M., editors, Tools for Morphological
Analysis. CSLI, Palo Alto, CA.

Koskenniemi, K. (1983). Two-level morphology: A general computational model
for word-form recognition and production. Publication 11, University of
Helsinki, Department of General Linguistics, Helsinki.

Nemeth, L., Tron, V., Halacsy, P., Kornai, A., Rung, A., and Szakadat, I. (2004).
Leveraging the open source ispell codebase for minority language analysis.
Proceedings of SALTMIL.

