
Learning word-level dialectal variation as phonological replacement rules
using a limited parallel corpus

Mans Hulden
University of Helsinki
Language Technology
mans.hulden@helsinki.fi

Iñaki Alegria
IXA taldea
UPV-EHU

i.alegria@ehu.es

Izaskun Etxeberria
IXA taldea
UPV-EHU

izaskun.etxeberria@ehu.es

Montse Maritxalar
IXA taldea
UPV-EHU

montse.maritxalar@ehu.es

Abstract

This paper explores two different methods of
learning dialectal morphology from a small
parallel corpus of standard and dialect-form
text, given that a computational description
of the standard morphology is available. The
goal is to produce a model that translates in-
dividual lexical dialectal items to their stan-
dard dialect counterparts in order to facili-
tate dialectal use of available NLP tools that
only assume standard-form input. The results
show that a learning method based on induc-
tive logic programming quickly converges to
the correct model with respect to many phono-
logical and morphological differences that are
regular in nature.

1 Introduction

In our work with the Basque language, a morpho-
logical description and analyzer is available for the
standard language, along with other tools for pro-
cessing the language (Alegria et al., 2002). How-
ever, it would be convenient to be able to analyze
variants and dialectal forms as well. As the dialectal
differences within the Basque language are largely
lexical and morphophonological, analyzing the di-
alectal forms would in effect require a separate mor-
phological analyzer that is able to handle the unique
lexical items in the dialect together with the differ-
ing affixes and phonological changes.

Morphological analyzers are traditionally hand-
written by linguists, most commonly using some
variant of the popular finite-state morphology ap-
proach (Beesley and Karttunen, 2002). This entails

having an expert model a lexicon, inflectional and
derivational paradigms as well as phonological al-
ternations, and then producing a morphological an-
alyzer/generator in the form of a finite-state trans-
ducer.

As the development of such wide-coverage mor-
phological analyzers is labor-intesive, the hope is
that an analyzer for a variant could be automatically
learned from a limited parallel standard/dialect cor-
pus, given that an analyzer already exists for the
standard language. This is an interesting problem
because a good solution to it could be applied to
many other tasks as well: to enhancing access to
digital libraries (containing diachronic and dialectal
variants), for example, or to improving treatment of
informal registers such as SMS messages and blogs,
etc.

In this paper we evaluate two methods of learning
a model from a standard/variant parallel corpus that
translates a given word of the dialect to its standard-
form equivalent. Both methods are based on finite-
state phonology. The variant we use for experiments
is Lapurdian,1 a dialect of Basque spoken in the La-
purdi (fr. Labourd) region in the Basque Country.

Because Basque is an agglutinative, highly in-
flected language, we believe some of the results can
be extrapolated to many other languages facing sim-
ilar challenges.

One of the motivations for the current work is
that there are a large number of NLP tools avail-
able and in development for standard Basque (also
called Batua): a morphological analyzer, a POS tag-
ger, a dependency analyzer, an MT engine, among

1Sometimes also called Navarro-Labourdin or Labourdin.

others (Alegria et al., 2011). However, these tools
do not work well in processing the different dialects
of Basque where lexical items have a different ortho-
graphic representation owing to slight differences in
phonology and morphology.

Here is a brief contrastive example of the kinds
of differences found in the (a) Lapurdian dialect and
standard Basque (b) parallel corpus:2

(a) Ez gero uste izan nexkatxa guziek tu egiten dautatela
(b) Ez gero uste izan neskatxa guztiek tu egiten didatela

As the example illustrates, the differences are mi-
nor overall—the word order and syntax are unaf-
fected, and only a few lexical items differ. This re-
flects the makeup of our parallel corpus quite well—
in it, slightly less than 20% of the word tokens
are distinct. However, even such relatively small
discrepancies cause great problems in the poten-
tial reuse of current tools designed for the standard
forms only.

We have experimented with two approaches that
attempt to improve on a simple baseline of mem-
orizing word-pairs in the dialect and the standard.
The first approach is based on work by Almeida
et al. (2010) on contrasting orthography in Brazil-
ian Portuguese and European Portuguese. In this
approach differences between substrings in distinct
word-pairs are memorized and these transformation
patterns are then applied whenever novel words are
encountered in the evaluation. To prevent over-
generation, the output of this learning process is
later subject to a morphological filter where only ac-
tual standard-form outputs are retained. The second
approach is an Inductive Logic Programming-style
(ILP) (Muggleton and De Raedt, 1994) learning
algorithm where phonological transformation rules
are learned from word-pairs. The goal is to find a
minimal set of transformation rules that is both nec-
essary and sufficient to be compatible with the learn-
ing data, i.e. the word pairs seen in the training data.

The remainder of the paper is organized as fol-
lows. The characteristics of the corpus available to
us are described in section 2. In sections 3, 4, and 5,
we describe the steps and variations of the methods
we have applied and how they are evaluated. Sec-
tion 6 presents the experimental results, and finally,

2English translation of the example: Don’t think all girls spit
on me

we discuss the results and present possibilities for
potential future work in section 7.

1.1 Related work

The general problem of supervised learning of di-
alectal variants or morphological paradigms has
been discussed in the literature with various connec-
tion to computational phonology, morphology, ma-
chine learning, and corpus-based work. For exam-
ple, Kestemont et al. (2010) presents a language-
independent system that can ‘learn’ intra-lemma
spelling variation. The system is used to produce
a consistent lemmatization of texts in Middle Dutch
literature in a medieval corpus, Corpus-Gysseling,
which contains manuscripts dated before 1300 AD.
These texts have enormous spelling variation which
makes a computational analysis difficult.

Koskenniemi (1991) provides a sketch of a dis-
covery procedure for phonological two-level rules.
The idea is to start from a limited number of
paradigms (essentially pairs of input-output forms
where the input is the surface form of a word and the
output a lemmatization plus analysis). The problem
of finding phonological rules to model morpholog-
ical paradigms is essentially similar to the problem
presented in this paper. An earlier paper, Johnson
(1984), presents a ‘discovery procedure’ for learning
phonological rules from data, something that can be
seen as a precursor to the problem dealt with by our
ILP algorithm.

Mann and Yarowsky (2001) present a method
for inducing translation lexicons based on transduc-
tion models of cognate pairs via bridge languages.
Bilingual lexicons within languages families are in-
duced using probabilistic string edit distance mod-
els. Inspired by that paper, Scherrer (2007) uses
a generate-and-filter approach quite similar to our
first method. He compares different measures of
graphemic similarity applied to the task of bilin-
gual lexicon induction between Swiss German and
Standard German. Stochastic transducers are trained
with the EM algorithm and using handmade trans-
duction rules. An improvement of 11% in F-score is
reported over a baseline method using Levenshtein
Distance.

Full corpus 80% part. 20% part.

Sentences 2,117 1,694 423
Words 12,150 9,734 2,417

Unique words
Standard Basque 3,553 3,080 1,192
Lapurdian 3,830 3,292 1,239

Filtered pairs 3,610 3,108 1,172
Identical pairs 2,532 2,200 871
Distinct pairs 1,078 908 301

Table 1: Characteristics of the parallel corpus used for
experiments.

2 The corpus

The parallel corpus used in this research is part of
“TSABL” project developed by the IKER group in
Baiona (fr. Bayonne).3 The researchers of the IKER
project have provided us with examples of the La-
purdian dialect and their corresponding forms in
standard Basque. Our parallel corpus then contains
running text in two variants: complete sentences of
the Lapurdian dialect and equivalent sentences in
standard Basque.

The details of the corpus are presented in table 1.
The corpus consists of 2,117 parallel sentences, to-
taling 12,150 words (roughly 3,600 types). In order
to provide data for our learning algorithms and also
to test their performance, we have divided the cor-
pus into two parts: 80% of the corpus is used for the
learning task (1,694 sentences) and the remaining
20% (423 sentences) for evaluation of the learning
process. As is seen, roughly 23% of the word-pairs
are distinct. Another measure of the average devi-
ation between the word pairs in the corpus is given
by aligning all word-pairs by minimum edit distance
(MED): aligning the 3,108 word-pairs in the learn-
ing corpus can be done at a total MED cost of 1,571.
That is, roughly every 14th character in the dialect
data is different from the standard form.

3 The baseline

The baseline of our experiments is a simple method,
based on a dictionary of equivalent words with the
list of correspondences between words extracted

3Towards a Syntactic Atlas of the Basque Language, web
site: http://www.iker.cnrs.fr/-tsabl-towards-a-syntactic-atlas-
of-.html

from the learning portion (80%) of the corpus. This
list of correspondences contains all different word
pairs in the variant vs. standard corpus. The baseline
approach consists simply of memorizing all the dis-
tinct word pairs seen between the dialectal and stan-
dard forms, and subsequently applying this knowl-
edge during the evaluation task. That is, if an in-
put word during the evaluation has been seen in the
training data, we provide the corresponding previ-
ously known output word as the answer. Otherwise,
we assume that the output word is identical to the
input word.

4 Overview of methods

We have employed two different methods to produce
an application that attempts to extract generaliza-
tions from the training corpus to ultimately be able
to produce the equivalent standard word correspond-
ing to a given dialectal input word. The first method
is based on already existing work by Almeida et al.
(2010) that extracts all substrings from lexical pairs
that are different. From this knowledge we then pro-
duce a number of phonological replacement rules
that model the differences between the input and
output words. In the second method, we likewise
produce a set of phonological replacement rules, us-
ing an ILP approach that directly induces the rules
from the pairs of words in the training corpus.

The core difference between the two methods is
that while both extract replacement patterns from
the word-pairs, the first method does not consider
negative evidence in formulating the replacement
rules. Instead, the existing morphological analyzer
is used as a filter after applying the rules to unknown
text. The second method, however, uses negative
evidence from the word-pairs in delineating the re-
placement rules as is standard in ILP-approaches,
and the subsequent morphological filter for the out-
put plays much less of a role. Evaluating and com-
paring both approaches is motivated because the first
method may produce much higher recall by virtue
of generating a large number of input-output candi-
dates during application, and the question is whether
the corresponding loss in precision may be mitigated
by judicious application of post-processing filters.

4.1 Format of rules
Both of the methods we have evaluated involve
learning a set of string-transformation rules to
convert words, morphemes, or individual letters
(graphemes) in the dialectal forms to the stan-
dard variant. The rules that are learned are in
the format of so-called phonological replacement
rules (Beesley and Karttunen, 2002) which we have
later converted into equivalent finite-state transduc-
ers using the freely available foma toolkit (Hulden,
2009a). The reason for the ultimate conversion of
the rule set to finite-state transducers is twofold:
first, the transducers are easy to apply rapidly to
input data using available tools, and secondly, the
transducers can further be modified and combined
with the standard morphology already available to
us as a finite transducer.

In its simplest form, a replacement rule is of the
format

A→ B || C D (1)

where the arguments A,B,C,D are all single sym-
bols or strings. Such a rule dictates the transfor-
mation of a string A to B, whenever the A occurs
between the strings C and D. Both C and D are
optional arguments in such a rule, and there may
be multiple conditioning environments for the same
rule.

For example, the rule:

h -> 0 || p , t , l , a s o
(2)

would dictate a deletion of h in a number of con-
texts; when the h is preceded by a p, t, or l, or suc-
ceeded by the sequence aso, for instance transform-
ing ongiethorri (Lapurdian) to ongietorri (Batua).

As we will be learning several rules that each tar-
get different input strings, we have a choice as to the
mode of application of the rules in the evaluation
phase. The learned rules could either be applied in
some specific order (sequentially), or applied simul-
taneously without regard to order (in parallel).

For example, the rules:

u -> i || z a (3)

k -> g || z a u (4)

would together (in parallel) change zaukun into zai-
gun. Note that if we imposed some sort of ordering

on the rules and the u → i rule in the set would
apply first, for example, the conditioning environ-
ment for the second rule would no longer be met
after transforming the word into zaikun. We have
experimented with sequential as well as parallel pro-
cessing, and the results are discussed below.

4.2 Method 1 (lexdiff) details
The first method is based on the idea of identi-
fying sequences inside word pairs where the out-
put differs from the input. This was done through
the already available tool lexdiff which has been
used in automatic migration of texts between differ-
ent Portuguese orthographies (Almeida et al., 2010).
The lexdiff program tries to identify sequences of
changes from seen word pairs and outputs string cor-
respondences such as, for example: 76 ait ->
at ; 39 dautz -> diz (stemming from pairs
such as (joaiten/joaten and dautzut/dizut), indicating
that ait has changed into at 76 times in the cor-
pus, etc., thus directly providing suggestions as to
phonologically regular changes between two texts,
with frequency information included.

With such information about word pairs we gen-
erate a variety of replacement rules which are then
compiled into finite transducers with the foma ap-
plication. Even though the lexdiff program provides
a direct string-to-string change in a format that is
directly compilable into a phonological rule trans-
ducer, we have experimented with some possible
variations of the specific type of phonological rule
we want to output:

• We can restrict the rules by frequency and re-
quire that a certain type of change be seen at
least n times in order to apply that rule. For
example, if we set this threshold to 3, we will
only apply a string-to-string changing rule that
has been seen three or more times.

• We limit the number of rules that can be
applied to the same word. Sometimes the
lexdiff application divides the change be-
tween a pair of words into two separate rules.
For example the word-word correspondence
agerkuntza/agerpena is expressed by two rules:
rkun -> rpen and ntza -> na. Now,
given these two rules, we have to be able to
apply both to produce the correct total change

Figure 1: The role of the standard Basque (Batua) ana-
lyzer in filtering out unwanted output candidates created
by the induced rule set produced by method 1.

agerkuntza/agerpena. By limiting the number
of rules that can apply to a single input word we
can avoid creating many spurious outputs, but
also at the same time we may sacrifice some
ability to produce the desired output forms.

• We can also control the application mode of the
rules: sequential or parallel. If the previous
two rules are applied in parallel, the form ob-
tained from agerkuntza will not be correct
since the n overlaps with the two rules. That
is, when applying rules simultaneously in par-
allel, the input characters for two rules may not
overlap. However, if these two rules applied
in sequence (the order in this example is irrel-
evant), the output will be the correct: we first
change rkun -> rpen and later ntza ->
na. We have not a priori chosen to use parallel
or sequential rules and have decided to evaluate
both approaches.

• We can also compact the rules output by lex-
diff by eliminating redundancies and construct-
ing context-sensitive rules. For example: given
a rule such as rkun -> rpen, we can con-

vert this into a context-sensitive rule that only
changes ku into pe when flanked by r and n
to the left and right, respectively, i.e. producing
a rule:

k u -> p e || r n (5)

This has a bearing on the previous point and
will allow more rewritings within a single word
in parallel replacement mode since there are
fewer characters overlapping.

Once a set of rules is compiled with some instanti-
ation of the various parameters discussed above and
converted to a transducer, we modify the transducer
in various ways to improve on the output.

First, since we already have access to a large-scale
morphological transducer that models the standard
Basque (Batua), we restrict the output from the con-
version transducer to only allow those words as out-
put that are legitimate words in standard Basque.
Figure 1 illustrates this idea. In that figure, we see an
input word in the dialect (emaiten) produce a num-
ber of candidates using the rules induced. However,
after adding a morphological filter that models the
Batua, we retain only one output.

Secondly, in the case that even after applying
the Batua filter we retain multiple outputs, we sim-
ply choose the most frequent word (these unigram
counts are gathered from a separate newspaper cor-
pus of standard Basque).

4.3 Method 2 (ILP) details
The second method we have employed works
directly from a collection of word-pairs (di-
alect/standard in this case). We have developed an
algorithm that from a collection of such pairs seeks
a minimal hypothesis in the form of a set of replace-
ment rules that is consistent with all the changes
found in the training data. This approach is gener-
ally in line with ILP-based machine learning meth-
ods (Muggleton and De Raedt, 1994). However, in
contrast to the standard ILP, we do not learn state-
ments of first-order logic that fit a collection of data,
but rather, string-to-string replacement rules.4

4Phonological string-to-string replacement rules can be de-
fined as collections of statements in first-order logic and com-
piled into transducers through such logical statements as well;

The two parameters to be induced are (1) the col-
lection of string replacements X → Y needed to
characterize the training data, and (2) the minimal
conditioning environments for each rule, such that
the collection of rules model the string transforma-
tions found in the training data.

The procedure employed for the learning task is
as follows:

(1) Align all word pairs (using minimum edit dis-
tance by default).

(2) Extract a collection of phonological rewrite
rules.

(3) For each rule, find counterexamples.

(4) For each rule, find the shortest conditioning en-
vironment such that the rule applies to all pos-
itive examples, and none of the negative exam-
ples. Restrict rule to be triggered only in this
environment.

The following simple example should illustrate
the method. Assuming we have a corpus of only
two word pairs:

emaiten ematen
igorri igorri

in step (1) we would perform the alignment and pro-
duce the output

e m a i t e n i g o r r i
e m a ∅ t e n i g o r r i

From this data we would in step (2) gather that
the only active phonological rule is i → ∅, since
all other symbols are unchanged in the data. How-
ever, we find two counterexamples to this rule (step
3), namely two i-symbols in igorri which do not al-
ternate with ∅. The shortest conditioning environ-
ment that accurately models the data and produces
no overgeneration (does not apply to any of the is in
igorri) is therefore:

i -> ∅ || a (6)

see e.g. Hulden (2009b) for details. In other words, in this
work, we skip the intermediate step of defining our observa-
tions as logical statements and directly convert our observations
into phonological replacement rules.

the length of the conditioning environment being 1
(1 symbol needs to be seen to the left plus zero sym-
bols to the right). Naturally, in this example we have
two competing alternatives to the shortest general-
ization: we could also have chosen to condition the
i-deletion rule by the t that follows the i. Both con-
ditioning environments are exactly one symbol long.
To resolve such cases, we a priori choose to favor
conditioning environments that extend farther to the
left. This is an arbitrary decision—albeit one that
does have some support from phonology as most
phonological assimilation rules are conditioned by
previously heard segments—and very similar results
are obtained regardless of left/right bias in the learn-
ing. Also, all the rules learned with this method are
applied simultaneously (in parallel) in the evaluation
phase.

4.3.1 String-to-string vs. single-symbol rules
In some cases several consecutive input symbols

fail to correspond to the output in the learning data,
as in for example the pairing

d a u t
d i ∅ t

corresponding to the dialect-standard pair daut/dit.
Since there is no requirement in our formalism of
rewrite rules that they be restricted to single-symbol
rewrites only, there are two ways to handle this: ei-
ther one can create a string-to-string rewriting rule:

au→ i / CONTEXT

or create two separate rules

a→ i / CONTEXT , u→ ∅ / CONTEXT

where CONTEXT refers to the minimal condition-
ing environment determined by the rest of the data.
We have evaluated both choices, and there is no no-
table difference between them in the final results.

5 Evaluation

We have measured the quality of different ap-
proaches by the usual parameters of precision, re-
call and the harmonic combination of them, the F1-
score, and analyzed how the different options in the
two approaches affect the results of these three pa-
rameters. Given that we, especially in method 1,
extract quite a large number of rules and that each

input word generates a very large number of candi-
dates if we use all the rules extracted, it is possible to
produce a high recall on the conversion of unknown
dialect words to the standard form. However, the
downside is that this naturally leads to low precision
as well, which we try to control by introducing a
number of filters to remove some of the candidates
output by the rules. As mentioned above, we use
two filters: (1) an obligatory filter which removes
all candidate words that are not found in the stan-
dard Basque (by using an existing standard Basque
morphological analyzer), and (2) using an optional
filter which, given several candidates in the standard
Basque, picks the most frequently occurring one by
a unigram count from the separate newspaper cor-
pus. This latter filter turns out to serve a much more
prominent role in improving the results of method 1,
while it is almost completely negligible for method
2.

6 Results

As mentioned above, the learning process has made
use of 80% of the corpus, leaving 20% of the corpus
for evaluation of the above-mentioned approaches.
In the evaluation, we have only tested those words
in the dialect that differ from words in the standard
(which are in the minority). In total, in the evalu-
ation part, we have tested the 301 words that differ
between the dialect and the standard in the evalua-
tion part of the corpus.

The results for the baseline—i.e. simple memo-
rization of word-word correspondences—are (in %):
P = 95.62, R = 43.52 and F1 = 59.82. As ex-
pected, the precision of the baseline is high: when
the method gives an answer it is usually the correct
one. But the recall of the baseline is low, as is ex-
pected: slightly less than half the words in the eval-
uation corpus have been encountered before.5

6.1 Results with the lexdiff method

Table 2 shows the initial experiment of method
1 with different variations on the frequency

5The reason the baseline does not show 100% precision is
that the corpus contains minor inconsistencies or accepted al-
ternative spellings, and our method of measuring the precision
suffers from such examples by providing both learned alterna-
tives to a dialectal word, while only one is counted as being
correct.

P R F1

f ≥ 1 38.95 66.78 49.20
f ≥ 2 46.99 57.14 51.57
f ≥ 3 49.39 53.82 51.51

Table 2: Values obtained for Precision, Recall and F-
scores with method 1 by changing the minimum fre-
quency of the correspondences to construct rules for
foma. The rest of the options are the same in all three
experiments: only one rule is applied within a word.

P R F1

f ≥ 1 70.28 58.13 63.64
f ≥ 2 70.18 53.16 60.49
f ≥ 3 71.76 51.50 59.96

Table 3: Values obtained for Precision, Recall and F-
score with method 1 by changing the threshold frequency
of the correspondences and applying a post-filter.

threshold—this is the limit on the number of times
we must see a string-change to learn it. The re-
sults clearly show that the more examples we extract
(frequency 1), the better results we obtain for recall
while at the same time the precision suffers since
many spurious outputs are given—even many differ-
ent ones that each legitimately correspond to a word
in the standard dialect. The F1-score doesn’t vary
very much and it maintains similar values through-
out. The problem with this approach is one which
we have noted before: the rules produce a large
number of outputs for any given input word and
the consequence is that the precision suffers, even
though only those output words are retained that cor-
respond to actual standard Basque.

With the additional unigram filter in place, the
results improve markedly. The unigram-filtered re-
sults are given in table 3.

We have also varied the maximum number of
possible rule applications within a single word as
well as applying the rules in parallel or sequentially,
and compacting the rules to provide more context-
sensitivity. We shall here limit ourselves to present-
ing the best results of all these options in terms of
the F1-score in table 4.

In general, we may note that applying more than

P R F1

Exp1 72.20 57.81 64.21
Exp2 72.13 58.47 64.59
Exp3 75.10 60.13 66.79

Table 4: Method 1. Exp1: frequency 2; 2 rules applied;
in parallel; without contextual conditioning. Exp2: fre-
quency 1; 1 rule applied; with contextual conditioning.
Exp3: frequency 2; 2 rules applied; in parallel; with con-
textual conditioning.

one rule within a word has a negative effect on
the precision while not substantially improving the
recall. Applying the unigram filter—choosing the
most frequent candidate—yields a significant im-
provement: much better precision but also slightly
worse recall. Choosing either parallel or sequential
application of rules (when more than one rule is ap-
plied to a word) does not change the results signifi-
cantly. Finally, compacting the rules and producing
context-sensitive ones is clearly the best option.

In all cases the F1-score improves if the unigram
filter is applied; sometimes significantly and some-
times only slightly. All the results of the table 4
which lists the best performing ones come from ex-
periments where the unigram filter was applied.

Figure 2 shows how precision and recall val-
ues change in some of the experiments done with
method 1. There are two different groups of points
depending on if the unigram filter is applied, illus-
trating the tradeoff in precision and recall.

6.2 Results with the ILP method

The ILP-based results are clearly better overall, and
it appears that the gain in recall by using method
1 does not produce F1-scores above those produced
with the ILP-method, irrespective of the frequency
filters applied. Crucially, the negative evidence
and subsequent narrowness of the replacement rules
learned with the ILP method is responsible for the
higher accuracy. Also, the results from the ILP-
based method rely very little on the post-processing
filters, as will be seen.

The only variable parameter with the ILP method
concerns how many times a word-pair must be seen
to be used as learning evidence for creating a re-
placement rule. As expected, the strongest result

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

P vs R

without filter
with filter

Figure 2: Tradeoffs of precision and recall values in the
experiments with method 1 using various different pa-
rameters. When the unigram filter is applied the precision
is much better, but the recall drops.

P R F1

n = 1 85.02 (86.13) 58.47 (57.80) 69.29 (69.18)
n = 2 82.33 (83.42) 54.15 (53.49) 65.33 (65.18)
n = 3 80.53 (82.07) 50.83 (50.17) 62.32 (62.26)
n = 4 81.19 (82.32) 50.17 (49.50) 62.01 (61.83)

Table 5: Experiments with the ILP method using a thresh-
old of 1–4 (times a word-pair is seen) to trigger rule learn-
ing. The figures in parentheses are the same results with
the added postprocessing unigram filter that, given sev-
eral output candidates of the standard dialect, chooses the
most frequent one.

is obtained by using all word-pairs, i.e. setting the
threshold to 1. Table 5 shows the degradation of per-
formance resulting from using higher thresholds.

Interestingly, adding the unigram filter that im-
proved results markedly in method 1 to the output of
the ILP method slightly worsens the results in most
cases, and gives no discernible advantage in others.
In other words, in those cases where the method pro-
vides multiple outputs, choosing the most frequent
one on a unigram frequency basis gives no improve-
ment over not doing so.

Additionally, there is comparatively little advan-
tage with this method in adding the morphological
filter to the output of the words in method 2 (this
is the filter that rules out non-standard words). The
results in table 5 include the morphological filter,
but omitting it altogether brings down the best F1

P R F1

Baseline 95.62 43.52 59.82

Method 1 (lexdiff) 75.10 60.13 66.79
Method 2 (ILP) 85.02 58.47 69.29

Table 6: The best results (per F1-score of the two meth-
ods). The parameters of method 1 included using only
those string transformations that occur at least 2 times in
the training data, and limiting rule application to a maxi-
mum of 2 times within a word, and including a unigram
post-filter. Rules were contextually conditioned. For
method 2, all the examples (threshold 1) in the training
data were used as positive and negative evidence, with-
out a unigram filter.

to 56.14 from 69.29. By contrast, method 1 de-
pends heavily on it and omitting the filter brings
down the F1-score from 66.79 to 11.53 with the
otherwise strongest result of method 1 seen in ta-
ble 6. The most prominent difference between the
two approaches is that while method 1 can be fine-
tuned using frequency information and various fil-
ters to yield results close to method 2, the ILP ap-
proach provides equally robust results without any
additional information—in particular, frequency in-
formation of the target language. We also find a
much lower rate of errors of commission with the
ILP method; this is somewhat obvious as it takes ad-
vantage of negative evidence directly while the first
method only does so indirectly through filters added
later.

7 Conclusions and future work

We have presented a number of experiments to solve
a very concrete task: given a word in the Lapurdian
dialect of Basque, produce the equivalent standard
Basque word. As background knowledge, we have
a complete standard Basque morphological analyzer
and a small parallel corpus of dialect and standard
text. The approach has been based on the idea of
extracting string-to-string transformation rules from
the parallel corpus, and applying these rules to un-
seen words. We have been able to improve on the
results of a naive baseline using two methods to in-
fer phonological rules of the information extracted
from the corpus and applying them with finite state
transducers. In particular, the second method, in-

ferring minimal phonological rewrite rules using
an Inductive Logic Programming-style approach,
seems promising as regards inferring phonological
and morphological differences that are quite regu-
lar in nature between the two language variants. We
expect that a larger parallel corpus in conjunction
with this method could potentially improve the re-
sults substantially—with a larger set of data, thresh-
olds could be set so that morphophonological gener-
alizations are triggered only after a sufficient num-
ber of training examples (avoiding overgeneration),
and, naturally, many more unique, non-regular, lexi-
cal correspondences could be learned.

During the current work, we have also accumu-
lated a small but valuable training and test corpus
which may serve as a future resource for evaluation
of phonological and morphological rule induction
algorithms.

In order to improve the results, we plan to re-
search the combination of the previous methods with
other ones which infer dialectal paradigms and rela-
tions between lemmas and morphemes for the di-
alect and the standard. These inferred relations
could be contrasted with the information of a larger
corpus of the dialect without using an additional par-
allel corpus.

Acknowledgments

We are grateful for the insightful comments
provided by the anonymous reviewers. This re-
search has been partially funded by the Spanish
Science and Innovation Ministry via the OpenMT2
project (TIN2009-14675-C03-01) and the European
Commission’s 7th Framework Program under grant
agreement no. 238405 (CLARA).

References

Alegria, I., Aranzabe, M., Arregi, X., Artola, X.,
Dı́az de Ilarraza, A., Mayor, A., and Sarasola, K.
(2011). Valuable language resources and applica-
tions supporting the use of Basque. In Vetulani,
Z., editor, Lecture Notes in Artifitial Intelligence,
volume 6562, pages 327–338. Springer.

Alegria, I., Aranzabe, M., Ezeiza, N., Ezeiza, A.,
and Urizar, R. (2002). Using finite state tech-
nology in natural language processing of basque.

In LNCS: Implementation and Application of Au-
tomata, volume 2494, pages 1–12. Springer.

Almeida, J. J., Santos, A., and Simoes, A.
(2010). Bigorna–a toolkit for orthography migra-
tion challenges. In Seventh International Con-
ference on Language Resources and Evaluation
(LREC2010), Valletta, Malta.

Beesley, K. R. and Karttunen, L. (2002). Finite-state
morphology: Xerox tools and techniques. Stud-
ies in Natural Language Processing. Cambridge
University Press.

Hulden, M. (2009a). Foma: a finite-state compiler
and library. In Proceedings of the 12th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Demonstrations
Session, pages 29–32, Athens, Greece. Associa-
tion for Computational Linguistics.

Hulden, M. (2009b). Regular expressions and pred-
icate logic in finite-state language processing. In
Piskorski, J., Watson, B., and Yli-Jyrä, A., edi-
tors, Finite-State Methods and Natural Language
Processing—Post-proceedings of the 7th Interna-
tional Workshop FSMNLP 2008, volume 191 of
Frontiers in Artificial Intelligence and Applica-
tions, pages 82–97. IOS Press.

Johnson, M. (1984). A discovery procedure for cer-
tain phonological rules. In Proceedings of the
10th international conference on Computational
linguistics, COLING ’84, pages 344–347. Asso-
ciation for Computational Linguistics.

Kestemont, M., Daelemans, W., and Pauw, G. D.
(2010). Weigh your words—memory-based
lemmatization for Middle Dutch. Literary and
Linguistic Computing, 25(3):287–301.

Koskenniemi, K. (1991). A discovery procedure for
two-level phonology. Computational Lexicology
and Lexicography: A Special Issue Dedicated to
Bernard Quemada, pages 451–446.

Mann, G. S. and Yarowsky, D. (2001). Multi-
path translation lexicon induction via bridge lan-
guages. In Proceedings of the second meeting of
the North American Chapter of the Association
for Computational Linguistics on Language tech-
nologies, NAACL ’01, pages 1–8.

Muggleton, S. and De Raedt, L. (1994). Inductive

Logic Programming: theory and methods. The
Journal of Logic Programming, 19:629–679.

Scherrer, Y. (2007). Adaptive string distance mea-
sures for bilingual dialect lexicon induction. In
Proceedings of the 45th Annual Meeting of the
ACL: Student Research Workshop, ACL ’07,
pages 55–60. Association for Computational Lin-
guistics.

