
Syntactic Error Detection and Correction in Date
Expressions using Finite-State Transducers

Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen
Otaegi and Iñaki Alegria

Department of Computer Languages and Systems
University of the Basque Country
P.O. box 649, E-20080 Donostia

{jipdisaa, jibgogak, jiporanm, acpalloi}@si.ehu.es

July 31, 2007

Abstract

This paper presents a system for the detection and correction of syntactic er-
rors. It combines a robust morphosyntactic analyser and twogroups of finite-state
transducers specified using the Xerox Finite State Tool (XFST). One of the groups
is used for the description of syntactic error patterns while the second one is used
for the correction of the detected errors. The system has been tested on a corpus of
real texts, containing both correct and incorrect sentences, with good results.

1 Introduction

In this work we present a research carried out to detect and correct syntactic errors in
date expressions using finite-state transducers (FSTs). Finite-state constraints, encoded
in the form of automata and transducers, have been applied tothe linguistic analysis. We
have usedXFST for the definition of complex linguistic patterns over morphosyntactic
information.

We chose to deal with date expressions due to the fact that they contain morpho-
logically and syntactically rich enough phenomena where several types of errors can
be found. They can be considered representative of the errors that are detectable by
examining local syntactic contexts. Besides, and based on copy-editors’ and language
teachers’ opinion, date expressions in Basque are one of themost frequent source of
errors in both, language learners and native speakers.

Basque is an agglutinative language, and as a consequence, most of the elements
appearing in date expressions (year numbers, months and days) must inflect, i.e. the
corresponding article and case morphemes must be attached to them. Moreover, each
different date format requires that the elements involved appear in fixed combinations

1



2
Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen Otaegi and Iñaki

Alegria

of, for example, cases (see table 1), so different types of agreement are needed. These
require a previous linguistic analysis before applying theFSTs for detection and correc-
tion.

Finite-state techniques have been used to create most of theNLP tools for linguistic
analysis for Basque (Aduriz and Dı́az de Ilarraza 2003). Following a previous experi-
ence in the construction of a robust spelling checker based on FSTs, XUXEN1 (Agirre,
Alegria, Arregi, Artola, Dı́az de Ilarraza, Urkia, Maritxalar, and Sarasola 1992), we
have faced the task of syntactic error detection and correction in the same way.

The remainder of this paper is organised as follows. Section2 reviews several
related works. After commenting on the linguistic resources we have used in section
3, we give a general overview of the system in section 4. Section 5 describes the error
detection process, while section 6 presents the correctionprocedure. Then, we evaluate
the system in section 7, to conclude in section 8.

2 Related work

The problem of syntactic error detection and correction hasbeen addressed since the
early years of natural language processing. For the treatment of the significant amount
of errors (typographic, phonetic, cognitive and grammatical) that result in valid words
(Weischedel and Sondheimer 1983; Heidorn, k. Jensen, Miller, Byrd, and Chodorow
1982) different techniques have been proposed:

• Grammar-based techniques. These systems use the results ofa parser as input.
Techniques that use chart-based methods (Min and Wilson 1998) or the relaxation
of syntactic constraints (Douglas and Dale 1992) could be categorised into this
group. In general, these methods share the problem of incomplete coverage of the
underlying grammars. Manually written grammars are often unable to analyse
the full range of sentences in running text. Moreover, when dealing with ill-
formed sentences, the systems should accept not only correct sentences, but also
the much wider spectrum of incorrect ones. On the other hand,statistical parsers
induced from treebanks are able to analyse any sentence, butthey can not easily
distinguish correct sentences from incorrect ones.

• Error patterns (Kukich 1992; Golding and Schabes 1996; Mangu and Brill 1997),
which are either hand-coded rules or are automatically learned using statistical
techniques. Most of these approaches are implemented usingfinite-state tech-
niques, for example the Constraint Grammar (CG) formalism (Karlsson, Vouti-
lainen, Heikkila, and Anttila 1995) is used in (Arppe 2000; Birn 2000; Badia,
Gil, Quixal, and Valentı́n 2004) for error detection in Swedish and Catalan, or
the Xerox Finite State Tool (XFST)(Karttunen, Gaál, and Kempe 1997) for find-
ing grammar errors in Swedish texts written by children (Hashemi, Cooper, and
Andersson 2003).

Kukich (Kukich 1992) surveys the state of the art in syntactic error detection. She
estimates that between 25% and over 50% of the total errors are in fact are valid words.

1http://ixa.si.ehu.es



3

On the other hand, (Atwell and Elliot 1987) made a manual study concluding that 55%
of the errors are detectable by an examination of the local syntactic context, 18% are
due to global syntactic errors (involving long-distance syntactic dependencies, which
need a full parse of the sentence), and 27% are semantic errors.

Errors in date expressions can be deemed as a representativeof local syntactic er-
rors. A work similar to the one presented here is that of Karttunen (Karttunen 2006),
who describes a system that mapped numbers to numerals in Finnish. This language
has in common to Basque that the created linguistic structures are inflected, and some
of their components must agree in case. That makes the transduction process of these
languages more complex than in languages like English, witha simpler morphology.

Regarding the treatment of Basque date expressions, (Gojenola and Oronoz 2000)
presented a system that detected some types of errors using an unification based partial
parser. This work extends that system with a more comprehensive set of error types and
also including the task of error correction.

Error type Example
0. If the place name is inflected in inessive case (Donostian), Donostia[n] , 2007ko maiatzaren 27a[]
the day number must be inflected in inessive case. 27th May, 2007
If the place name is inflected in absolutive case (Donostia), Donostia, 2007ko maiatzaren 27a[n]
the day number must be inflected in absolutive case.
1. The year number cannot be inflected using a hyphen Donostian, 1995[-]eko maiatzaren 14an
2. The month (maiatza) must appear in lowercase 1999ko[M] aiatzaren 2an
3. The optional place name preceding dates (Frantzia) Frantzia 1997ko maiatzaren 8an
must be followed by a comma
4. The day number after a month in genitive case Donostian, 1995eko maiatzaren 22[]
(maiatzaren) must have a case mark
5. The day number after a month in ergative case 1998.eko maiatzak 14[ean] argitaratua
(maiatzak) cannot have a case mark
6. The month (maiatza) must be inflected in genitive Donostian, 1995eko Maiatza[ren] 14an
or absolutive case
7. The dot that makes a number ordinal (1995.eko) Donostian 1997[.]eko Maiatzan 28an
cannot appear after the year number except when
the wordurte (’year’) follows it
8. Numbers 11 and 31 can not take the absolutive 1997-ko maiatzaren 31[a]
singular.

Table 1: Most frequent error types in dates (errors marked inboldface).

3 Linguistic Resources

For the analysis of the input text, we use part of the Basque shallow syntactic analyser
(Aduriz and Dı́az de Ilarraza 2003), mainly based on finite-state technology (Aduriz,
Aldezabal, Alegria, Arriola, Dı́az de Ilarraza, Ezeiza, and Gojenola 2003). Although
information at chunk or syntactic levels could be used for the treatment of other error
phenomena, morphosyntactic information is enough for the recognition of errors in date
expressions.

Figure 1 shows the morphosyntactic analyser and the modulesfor disambigua-



4
Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen Otaegi and Iñaki

Alegria

Tokeniser

Segmenter

Morphosyntactic analyser

Multiword treatment

MORFEUS

EUSTAGGER

Linguistic disambiguation

Stochastic disambiguation

CG

%

Annotation
web (XML)

Text

Figure 1: Morphosyntactic analysis and disambiguation.

tion. The process starts with the outcome of the morphosyntactic analyser (MORFEUS),
which was created following the two-level morphology (Koskenniemi 1983), and deals
with all the lexical units of a text, both simple words and multi-word units. The tag-
ger/lemmatiserEUSTAGGERnot only obtains the lemma and category of each form but
also performs disambiguation using for this task information about part of speech, fine
grained part of speech or case. The disambiguation process is carried out by means of
linguistic rules using CG and stochastic rules based on Hidden Markov Models (Ezeiza
2003), which reduces the high word-level ambiguity to a limited amount of remaining
interpretations.

All the information in the analysis chain is exchanged by means of standardised
XML files (Artola, Dı́az de Ilarraza, Ezeiza, Gojenola, Labaka,Sologaistoa, and Soroa
2005) and a class library for the management of all the linguistic information. The full
system provides a robust basis, essential not only for any treatment based on corpora
but also for error detection.

4 General Overview of the System

The process for error detection and correction starts afteranalysing the input text. The
system (see figure 2) is composed of two groups ofFSTs, one for error detection (see
section 5) and the other one for the generation of correct dates (see section 6). Two
filters prepare the input for each of theseFST groups.

Take, for example, the date expression“1995eko maiatzaren 15”(15th of May,
1995). It is incorrectly written because in Basque the day number after a month in



5

Morphosyntactically analysed text in XML

"From XML to XFST " filter

FSTs for date error detection

"To numbers" filter

FSTs for date generation

Correct date expressions

(1)

(2)

(3)

(4)

(5)

Figure 2: General architecture of the system.

genitive case must take a case mark. Given this text as input,the date expression will
go through the following modules:

1. “From XML to XFST” filter . In a first step, the preprocessing filter changes the
morphosyntactic information inXML to a more suitable format for theFSTs. Fig-
ure 3 shows the feature structures that gather the lemma and morphosyntactic
information about the incorrect date example, includingPOS, FPOS(fine grained
part of speech),CASE, NUM andMUG (definite/indefinite article). Figure 4 rep-
resents the corresponding simplified format.

2

6

6

6

6

6

6

6

6

6

6

4

form ’1995eko’
lemma ’1995’

morph

2

6

6

6

6

6

4

pos NOUN

fpos NUMBER

case GEN-L

num S

mug M

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

4

form ’Maiatzaren’
lemma ’maiatz’

morph

2

6

6

6

6

6

4

pos NOUN

fpos COMMON

case GEN

num S

mug M

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

4

form ’15’
lemma ’15’

morph

"

pos NOUN

fpos NUMBER

#

3

7

7

7

7

5

Figure 3: Feature structures representing a date expression (see label 1 in figure 2)

2. FSTs for date error detection. For error detection in date expressions, we have
sequentially applied nine finite-state transducers, one for each kind of error de-
fined (see table 1), creating a cascade ofFSTs. In the output of each of theFSTs,
the incorrect linguistic structures are surrounded by tagsdescribing each type of



6
Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen Otaegi and Iñaki

Alegria

error. Figure 4 shows how the incorrect structure is surrounded by two error tags
(BEGINERRORTYPE4 andENDERRORTYPE4)2 .

{ WS { AS +form +1995eko +lemma +1995 +morph +POS+NOUN +FPOS+NUMB

+CASE+GEN-L +NUMBER +S +MUG +M AE } WE }
BEGINERRORTYPE4
{ WS { AS +form +Maiatzaren +lemma +maiatz +morph +POS+NOUN +FPOS+COMMON

+CASE+GEN +NUM +S +MUG +M AE } WE }
{ WS { AS +form +15 +lemma +15 +morph +POS+NOUN +FPOS+NUMBER AE } WE }
ENDERRORTYPE4

Figure 4: Output of the error detection grammar (labeled 3 infigure 2).

3. “To numbers” filter. Once the errors in date expressions are tagged (it is fre-
quent to find more than one error in each date expression), thecorrection process
starts. TheFSTs used for error correction were not created specifically forthis
purpose but for helping Basque language learners to write date expressions3. The
group of FSTs for date generationobtain the corresponding text equivalences
from numbers representing date expressions. The“To numbers” filter obtains a
numbered expression with the format“year/month/day”4 (see figure 5) for each
date expression tagged with an error.

DonostiaLocPn1995/05/15

Figure 5: Result after the application of the “To numbers” filter (labeled 4 in figure 2).

4. FSTs for date generation. As we have previously mentioned, the correction mod-
ule usesFSTs that change numbers representing date expressions to their corre-
sponding full-text equivalences. Figure 6 shows two correction candidates cre-
ated for correcting the error in the example.

Donostia, 1995eko maiatzaren 15a

Donostian, 1995eko maiatzaren 15ean

Figure 6: Corrected date expressions (labeled 5 in figure 2).

5 Error Detection

Inflection in date expressions is a common source of errors, not detectable by a spelling
checker, as each isolated word-form is correct. Figure 7 shows one of the formats of a
valid date expression:

2The following tags are added to the morphosyntactic information to facilitate the regular expression
definition in theXFST grammar: WS (word starts),WE (word ends),AS (analysis starts) andAE (analysis
ends).

3http://kantauri.eleka.net/neh and http://sisx04.si.ehu.es/˜ iniebla001/idazlagun/
4In Basque numerically written dates follow the format year/month/day.



7

Durangon, 1999ko martxoaren 7an
Durango, inessive, sing 1999, genitive martxoa, genitive,sing 7, inessive, sing
In Durango, 1999, March the 7th

Figure 7: Format of a valid date expression.

After examining different instances of errors, we chose thenine most frequent error
types (see table 1). Some of these errors belong to idiosyncratic facts of date expressions
(errors 0, 3, 4, 5 and 6), while four of them must be consideredlinguistically incorrect
facts that can be reused in other general contexts (errors 1,2, 7 and 8). A group of
error detection patterns has been defined inXFST for each of the error types, and after
compiling them, a cascade ofFSTs is applied to the input text.

We adopted a kind of “gradual relaxation” approach, considering that several mis-
takes could co-occur, as quite often two or three errors might appear in the same expres-
sion. We had to design error patterns bearing in mind not onlythe correct expression,
but also its erroneous versions. This relaxation on what could be considered a correct
date had the risk of increasing the number of false alarms.

1. define Month Gen ...
2. define Incorrect Month Gen in Upper ...
3. define Correct Year ...
4. define Incorrect Year with Hyphen ...
5. define Year [ Correct Year | Incorrect Year with Hyphen ]
6. define Error Type 4

[Month Gen | Incorrect Month Gen in Upper ] Not Inflec Numb;
7. define Mark Error Type 4 [ Error Type 4 ]

@ -> BEGINERRORTYPE4 ... ENDERRORTYPE4 || Year ;

Figure 8: Regular expressions for an error pattern.

The error pattern for the fourth kind of error (the day numberafter a month in
genitive case must have a case mark) is defined in two steps (see figure 8). First, the
syntactic pattern of the error is defined (a correct month or amonth incorrectly written in
uppercase followed by a non inflected number, see definitions1 through 6), and named
Error Type 4. Second, a longest-match left-to-right replace operator (@ - >) is
used (Mark Error Type 4) to surround the incorrect pattern (represented by . . . ) by
two error tags (BEGINERRORTYPE4 andENDERRORTYPE4). To further restrict the
application of the rule, left and right contexts for the error can be defined, mostly to
assure that the rule is only applied to dates, thus avoiding false alarms. In this case,
a year must be found to the left of the month. The year could be acorrectly written
year or a mispelled one (with a hyphen). As we can see, the error-description pattern
considers the possibility that previous error patterns occur.



8
Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen Otaegi and Iñaki

Alegria

6 Error Correction

For the correction task, we took a group of already definedXFST transducers that was
created to map numbers representing date, time and number expressions to text (Otaegi
2006), and adapted a subset of them in order to correct date expressions.

According to The Royal Academy of the Basque Language5, the most appropriate
ways to express a date are those in which the locative (place name) and the declension of
the day agree in absolutive or inessive cases (in figure 6 the first date expression agrees
in absolutive case and the second one in inessive case), so, we create date expressions
in this format.

A FST has been used for each of the cases. These transducers, nevertheless, do not
create the word indicating location and the comma after it. AFST for morphological
generation created usinglexc (Beesley and Karttunen 2003) is used to generate the
locative in inessive case. The comma is generated after checking that a proper name
indicating a locative (LocPnin figure 5) precedes the date.

The process of creating a full-text date is simple. Let us explain the rules for specify-
ing theFST that generates dates in inessive case (see figure 9). The input is divided into
three groups separated by slashes: year, month and day. Whena year is found, a gen-
itive locative6) morpheme (“-ko” ) is added to the year number (Translate Year,
rule number 1). Months are mapped from numbers to text by means of replacement op-
erators that are restricted to the date context (Translate Month, rule number 3). Fi-
nally, the inessive singular morpheme (“-an” ) is added to the day (Translate Day,
rule number 4). There are several exceptions to these mappings: when the year or day
number finishes in a consonant, an epenthetic“-e” is added to the genitive locative case
in the year (“-e” + “-ko” = “-eko” ), and to the inessive case (“-e” + “an” = “-ean” )
in the day (Add E Day, rule number 6).

1. define Translate Year [ "/" -> "ko" || Number Number "/" ];
2. define Translate Month05 [ "0" 5 "/ " -> " maiatzaren " || "ko" ];
3. define Translate Month [ Translate Month01 .o. Translate Month02

.o. ... .o. Translate Month12 ];
4. define Translate Day [ [ .. ] -> "a" "n" || Number .#. ];
5. define Translate [ Translate Year .o. Translate Month .o.

Translate Day ];
6. define Add E Day [ "a" "n" -> "e" ... ||

[ [ "0" | 2 | 4 | 6 | 8 ] 1 | [ 1 | 3 | 5 | 7 | 9 ] "0" | 5 ] ];
...

n-1. define Clean [ Add E Day .o. Add E Year ];
n. define Translate Clean [ Translate .o. Clean ];

Figure 9: Regular expressions for date generation.

This method, based on the generation of correct date expressions, guarantees the

5http://www.euskaltzaindia.net, 37th rule
6The genitive locative case “-ko” (“of”) is attached to phrases that denote location, or to phrases that

denote a property.



9

correction of all the errors in the expression even if not allof them were detected. For
example, if only 2 errors out of 3 are detected, all of them areproperly corrected.

7 Evaluation

The evaluation corpus (development + test) is composed of 267 essays written by stu-
dents (with a high proportion of errors) and texts from newspapers and magazines, more
than 500,000 words altogether. From them we chose 658 sentences, including correct
dates, incorrect dates, and also structures similar to dates. It was relatively easy to ob-
tain test data compared to other kinds of errors. Although the data must be obtained
mostly manually, date expressions contain several cues (month names, year numbers)
that help in the process of finding semiautomatically test sentences.

All the corpus was inspected looking for false alarms (see table 2), that is, correct
dates or sentences similar to dates that could be flagged as erroneous. The problem
of false alarms is one of the biggest challenges we must face when dealing with unre-
stricted texts. As a result of the selection procedure, the proportion of errors was higher
than in normal texts. Therefore, we divided our data into twogroups. One of them was
used for development and we left the second one for the final test. The proportion of
correct dates was higher in the case of test data with respectto those in the development
corpus, so that the effect of false alarms would be evaluatedwith more accuracy.

Development corpus Test corpus
Number of test items 411 247
Correct dates 51 35
Structures “similar” to dates 263 173
Incorrect dates 97 38
Incorrect dates with 1 error 48 49.6 % 9 23.7 %
Incorrect dates with 2 errors 35 36.0 % 25 65.8 %
Incorrect dates with 3 errors 10 10.3 % 3 7.9 %
Incorrect dates with 4 errors 4 4.1 % 1 2.6 %

Table 2: Test data.

Development corpus Test corpus
Number of test items 411 (97 errors) 247 (38 errors)
Undetected date errors 4 4.1 % 3 7.9 %
Detected date errors 93 95.9 % 35 92.1 %
False alarms 2 4

Table 3: Evaluation results.

Table 3 shows the results of the evaluation. As the development corpus could be in-
spected during the refinement of the patterns, the results inthe second and third columns



10
Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen Otaegi and Iñaki

Alegria

can be understood as an upper limit of the system in its current state, with 95.9% recall7

and 97.8% precision8 (93 detected errors/95 error proposals, that is, 2 false alarms).
The system obtains 92.1% recall over the corpus of previously unseen 247 test

items. Regarding precision the system correctly detects 35errors, giving 39 propos-
als (89.7%). If the false alarms are divided by the number of test items (4/247) of the
test corpus, we can estimate the false alarm rate to be around1.6% over the number of
dates in real texts. Table 4 examines some of the false alarmsand their cause. Although
the results are good, more corpus data will be needed in orderto maximize precision.

The correction guarantees that all the errors in date expressions were corrected even
when some of them could not be detected. That is, even when a sentence contains
more than one error, once one is detected, it is transformed to the numerical format. As
correct date expressions are generated from this format, all the errors are corrected.

Example Cause of the error
The analyser does not detect the line end

1998ko abenduak 20. Bizkaiko→ and analyses theBizkaikoplace name as it was
1998ko abenduak 25. immediately preceding the date expression.
20th December, 1998. From Bizcay 25th December, 1998If it was the case, the comma is missing.

The unknown wordPrimakovis interpreted
Primakovek 1998ko irailaren 11n hartu zuen . . . as a place name.
Primakov took it on the 11th of September 1998

Table 4: False alarms.

8 Conclusions and Future Work

This work shows an application ofXFST for syntactic error detection and correction
in date expressions. The reported experiment is based on a corpus, and tested on real
examples of both correct and incorrect sentences. This approach implies the existence
of big corpora and manual annotation for most of the errors.

Two of the most successful methods for error detection, i.e., relaxation of syntactic
constraints and error patterns, have been combined in our system with good results.
Relaxation has not been dynamically applied at parsing time, but it has been manually
coded. This implies a considerable amount of work, as we had to consider the formats
for valid sentences as well as for all their incorrect variants. Regular expressions in
the form of automata and transducers are suitable for the definition of complex error
patterns based on linguistic units.

We are currently exploring extensions to the system to detect new kinds of errors by
combining rule-based error detection and automatic acquisition of error patterns. We
think that this could help to smooth the scaling-up problem associated to the increase
in the number of rules, and the amount of work in the process ofhand-coding them.
Using either hand-coded rules or automatically learned ones, both methods have still
the problem of obtaining and marking big test corpora. Some experiments with the

7recall = correctly detected errors/all errors
8precision = correctly detected errors/(correctly detected errors + false alarms)



REFERENCES 11

automatic creation and tagging of errors (Sjöbergh and Knutsson 2005;Wagner, Foster,
and van Genabith ) seem to be a possible solution to this bottleneck.

We plan to extend the error detection/correction system to other qualitatively differ-
ent types of errors, such as those involving agreement between the main components of
the sentence, which is very rich in Basque, errors due to incorrect use of subcategoriza-
tion and errors in post-positions. Errors in post-positions, determiner-noun agreement
errors, . . . could be treated usingXFST, but a deeper study must be made if we want to
deal with errors involving long-distance dependencies in the sentence (e.g. agreement
between verb and subject, object or indirect object). Although the number of potential
syntactic errors is huge, we think that the treatment of the most frequent kinds of error
with high recall and precision can result in useful grammar-checking tools.
Acknowledgments.This research is supported by the University of the Basque Country (GIU05/52)
and the Ministry of Industry of the Basque Government (ANHITZ project, IE06-185). We would
like to thank Ruben Urizar for his collaboration in this work.

References
Aduriz, I., I. Aldezabal, I. Alegria, J. M. Arriola, A. Dı́azde Ilarraza, N. Ezeiza, and K. Go-

jenola (2003). Finite State Applications for Basque. InEACL 2003 Workshop on Finite-
State Methods in Natural Language Processing.

Aduriz, I. and A. Dı́az de Ilarraza (2003). MorphosyntacticDisambiguation and Shallow Pars-
ing in Computational Processing of Basque.Inquiries into the lexicon-syntax relations in
Basque, 1–21.

Agirre, E., I. Alegria, X. Arregi, X. Artola, A. Dı́az de Ilarraza, M. Urkia, M. Maritxalar,
and K. Sarasola (1992). XUXEN: A Spelling Checker/Corrector for Basque Based on
Two-Level Morphology. InProceedings of ANLP’92, Povo Trento, pp. 119–125.

Arppe, A. (2000, December 9-10). Developing a Grammar Checker for Swedish. InProceed-
ings from the 12th Nordiske datalingvistikkdager, Department of Linguistics, Norwegian
University of Science and Technology (NTNU). Nordgard.

Artola, X., A. Dı́az de Ilarraza, N. Ezeiza, K. Gojenola, G. Labaka, A. Sologaistoa, and
A. Soroa (2005). A Framework for Representing and Managing Linguistic Annota-
tions Based on Typed Feature Structures. InProceedings of Recent Advances on NLP
(RANLP05), Borovets, Bulgaria.

Atwell, E. and S. Elliot (1987).The Computational Analysis of English: a Corpus-Based
Approach, Chapter Dealing with Ill-Formed English Text. De Longman.

Badia, T., A. Gil, M. Quixal, and O. Valentı́n (2004). NLP-enhanced Error Checking for Cata-
lan Unrestricted Text. InProceedings of the fourth international conference on Language
Resources and Evaluation, LREC 2004, Lisbon, Portugal, pp. 1919–1922.

Beesley, K. R. and L. Karttunen (2003).Finite State Morphology. CSLI Publications.
Birn, J. (2000, December 9-10). Detecting Grammar Errors with Lingsofts Swedish Grammar-

checker. InProceedings from the 12th Nordiske datalingvistikkdager, Department of Lin-
guistics, Norwegian University of Science and Technology (NTNU). Nordgard.

Douglas, S. and R. Dale (1992). Towards Robust PATR. InCOLING, pp. 468–474.
Ezeiza, N. (2003).Corpusak ustiatzeko tresna linguistikoak. Euskararen etiketatzaile sintak-

tiko sendo eta malgua. PhD thesis. Donostia: University of the Basque Country.
Gojenola, K. and M. Oronoz (2000, April 30). Corpus-based Syntactic Error Detection Using

Syntactic Patterns. InNAACL-ANLP00,Student Research Workshop.



12
Arantza Dı́az de Ilarraza, Koldo Gojenola, Maite Oronoz, Maialen Otaegi and Iñaki

Alegria

Golding, A. R. and Y. Schabes (1996). Combining Trigram-Based and Feature-Based Methods
for Context-Sensitive Spelling Correction. In A. Joshi andM. Palmer (Eds.),Proceedings
of the Thirty-Fourth Annual Meeting of the Association for Computational Linguistics,
San Francisco, pp. 71–78. Morgan Kaufmann Publishers.

Hashemi, S. S., R. Cooper, and R. Andersson (2003). PositiveGrammar Checking: A Finite
State Approach. InComputational Linguistics and Intelligent Text Processing, 4th Inter-
national Conference, CICLing 2003, Mexico City, Mexico, February 16-22, Volume 2588
of Lecture Notes in Computer Science, pp. 635–646. Springer.

Heidorn, G., k. Jensen, L. Miller, R. Byrd, and M. Chodorow (1982). The EPISTLE Text-
Critiquing System.IBM Systems Journal 21(3).

Karlsson, F., A. Voutilainen, J. Heikkila, and A. Anttila (1995). Constraint Grammar:
Language-independent System for Parsing Unrestricted Text. Berlin: Prentice-Hall.

Karttunen, L. (2006). Numbers and Finnish Numerals.In A Man of Measure Festschrift in
Honour of Fred Karlsson on his 60th Birthday, a special supplement to SKY Journal of
Linguistics 19, 407–421.

Karttunen, L., T. Gaál, and A. Kempe (1997). Xerox Finite State Tool. Technical report, Xerox
Research Centre Europe.

Koskenniemi, K. (1983).Two-Level Morphology: a General Ccomputational Model for
Word-form Recognition and Production. Helsinki: University of Helsinki.

Kukich, K. (1992, December). Techniques for AutomaticallyCorrecting Words in Text.ACM
Computing Surveys 24(4), 377–439.

Mangu, L. and E. Brill (1997). Automatic Rule Acquisition for Spelling Correction. InPro-
ceedings of the 14th International Conference on Machine Learning, pp. 187–194. Mor-
gan Kaufmann.

Min, K. and W. H. Wilson (1998). Integrated Control of Chart Items for Error Repair. In
COLING-ACL, pp. 862–868.

Otaegi, M. (2006). Datak, orduak eta zenbakiak euskaraz. Technical report, University of the
Basque Country.

Sjöbergh, J. and O. Knutsson (2005). Faking Errors to AvoidMaking Errors: Very Weakly
Supervised Learning for Error Detection in Writing. InProceedings of RANLP 2005,
Borovets, Bulgaria, pp. 506–512.

Wagner, J., J. Foster, and J. van Genabith. A Comparative Evaluation of Deep and Shallow
Approaches to the Automatic Detection of Common Grammatical Errors. InProceedings
of the 2007 Joint Conference on Empirical Methods in NaturalLanguage Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pp. 112–121.

Weischedel, R. and N. Sondheimer (1983). Meta-rules as a Basis for Procedding Ill-Formed
Input.American Journal of Computational Linguistics 9(3-4), 161–177.


