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A B S T R A C T

Falls pose a major threat for the elderly as they result in severe consequences for their physical and mental

health or even death in the worst-case scenario. Nonetheless, the impact of falls can be alleviated with

appropriate technological solutions. Fall detection is the task of recognising a fall, i.e. detecting when a person

has fallen in a video. Such an algorithm can be implemented in lightweight devices which can then cater to

the users’ needs, e.g. alerting emergency services or caregivers. At the core of those systems, a model capable

of promptly recognising falls is crucial for reducing the time until help comes. In this paper we propose a fall

detection solution based on transformers, i.e. state-of-the-art neural networks for computer vision tasks. Our

model takes a video clip and decides if a fall has occurred or not. In a video stream, it would be applied in a

sliding-window fashion to trigger an alarm as soon as it detects a fall. We evaluate our fall detection backbone

model on the large UP-Fall dataset, as well as on the UR fall dataset, and compare our results with existing

literature using the former dataset.

1. Introduction

According to the Centers for Disease Control and Prevention,1 falls

represent a significant cause of injury and, in some cases, even fatalities

over the age of 65 in the United States, where a fall occurs every

second, every day, affecting one out of four elderly adults each year. In

a society with an ever-ageing population, this issue not only presents

health concerns but also creates economic challenges related to their

treatment. The aftermath of falls often leads to a loss of independence,

impacting elderly adults’ daily live. Hence, preventing falls or allevi-

ating their impact is of paramount importance for a healthy ageing.

That is why research related to fall detection is crucial to develop

technologies capable of aiding the elderly feel safer in their daily

routines.

In this paper, we focus on vision-based approaches (those including

a vision sensor) for fall detection due to the advantages they offer

compared to their wearable sensor-based counterpart (wearable sensors

like accelerometers, excluding wearable vision sensors). Vision-based

approaches are less intrusive and eliminate compliance issues asso-

ciated with wearing special garments, particularly for patients with

∗ Corresponding author at: Department of Computer Languages and Systems, University of the Basque Country (UPV/EHU), Paseo Rafael Moreno Pitxitxi 3,

Bilbao, 48013, Spain.
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1 https://www.cdc.gov/injury/features/older-adult-falls/index.html

cognitive issues such as dementia. Moreover, the widespread preva-

lence of cameras nowadays presents an opportunity to leverage their

ubiquity, potentially allowing for the scalability of fall detection models

beyond specific settings like smart homes to broader contexts such as

public spaces. This holds especially true for 2D cameras, in contrast to

3D cameras (which are capable of capturing depth information). Addi-

tionally, 2D cameras provide a more cost-effective solution compared

to 3D range sensors, which are often more expensive and may require

additional hardware setup and calibration.

Thanks to the advent of deep learning for vision-based models, the

performance of vision-based methods has significantly improved, clos-

ing the gap between sensor-based and vision-based models in terms of

performance. In fact, the transformer technology introduced in Vaswani

et al. (2017) has replaced Convolutional Neural Networks (CNNs) in

many tasks. Consequently, in this paper, we propose the use of a

transformer-based neural network for the detection of falls in videos.

Our objective is to extract features from raw RGB frames, without

the need for additional computations such as optical flow (OF) images,

skeletons/poses and so on. To the best of our knowledge, we are the
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first to directly apply transformers to address the fall detection task us-

ing only RGB images, without requiring to compute additional features.

Given that fall detection models are usually deployed in lightweight

devices for inference, it is imperative that the employed models have

low latency and minimal dependencies. Additionally, since the timely

detection of falls is critical due to their severe consequences, we adhere

to the guidelines of the dataset we propose for evaluation, the UP-Fall

dataset (Martínez-Villasenor et al., 2019), by reporting detection results

at 1-second intervals, or, equivalently, in a 16-frame video interval.

The UP-Fall dataset comprises 11 activities, making it suitable for fall

detection, as nearly half of the classes are related to falls.

We present two parallel evaluation strategies to facilitate a compre-

hensive comparison with the existing literature. The first strategy aligns

with the approach taken by the original authors of the UP-Fall dataset

and has also been used in the subsequent fall detection challenge they

organised. The second strategy follows the approach of Espinosa et al.

(2019), in which they compare their model in the binary classification

(by grouping the 11 activities into two classes: fall and no fall) and

multiclass classification settings.

Furthermore, we conducted experiments to assess the model’s abil-

ity to learn from additional datasets and generalise effectively. To

evaluate this, we selected the UR Fall dataset (Kwolek and Kepski,

2014) and a performed joint training using both the UP-Fall and UR

Fall datasets. Subsequently, we evaluated the model’s performance on

each dataset separately. It is important to note that, while our model

demonstrated the ability to learn from diverse data, we acknowledge

the limitation that its real-world application would need a substantial

dataset, which is currently unavailable for the fall detection task.

Nonetheless, we believe that the model has the potential to adapt

and further improve through additional data, as demonstrated by its

performance on the UR Fall dataset.

The paper makes two significant contributions. Firstly, we propose

the first vision-based transformer specifically designed to learn solely

from RGB data for fall detection. Secondly, we provide a comprehen-

sive comparison of our results with the existing literature, specifically

focusing on works that do not rely on additional features, thereby

ensuring that the model directly learns from RGB frames using the

UP-Fall dataset. Furthermore, we have made all the experimental code

publicly available (see Section 3), enabling fellow researchers to easily

verify and build upon our findings.

The remainder of the paper is organised as follows: Section 2

delves into the recent fall detection literature, Section 3 introduces our

proposed transformer model and, in Section 4, we present the UP-Fall

dataset, explain the evaluation strategy and compare our results with

the existing literature. Finally, we give some concluding remarks on

Section 5.

2. Related works

Fall detection (Alam et al., 2022) is the task of detecting when a

person is falling so that an alarm can be raised and call, for example, an

ambulance or warn someone. The types of approaches followed for this

detection (depending on what is used to detect the fall) can be divided

between sensor-based approaches (Nooruddin et al., 2021) and vision-

based approaches (Gutiérrez et al., 2021). Vision-based methods are,

in theory, very rich in information, but the computational capacity and

the algorithms were not able to correctly exploit it until recently. Due

to the increasing interest in deep learning networks, this research topic

shifted its interest to the vision-based methods that will be explained

in this literature review.

Fall detection cannot be approached as a regular video classification

task. A potential fall needs to be detected as soon as possible (within a

video stream) in order for a fall detection model to be useful in a real-

life situation. That is why intermediate outputs need to be generated.

The most common method, thus, is the use of a sliding window that

takes a chunk of frames and decides whether a fall has occurred. For

example, a pioneer work which introduced CNNs to solve the fall

detection was Yu et al. (2017). The authors of that work extracted a

binary silhouette of the person appearing in each frame and carried

out a per-frame classification of the pose, and identified falls among

their potential outputs. Instead of using a CNN to directly classify

images, Wang et al. (2016) extracted several features from silhouette

images, which also included CNN features among them. Both methods

required to segment people from images, which may be prone to

errors in some cases (e.g. multiple people, cluttered background, etc.).

Instead, compared to those first works, we directly use the RGB frames

to infer the fall.

Instead of binarising images, Núnez-Marcos et al. (2017) extracted

OF images from videos to perform sliding-window-based fall classifica-

tion, using 10 pairs of OF images to output a possible fall detection. The

authors employed a VGG16 (Simonyan and Zisserman, 2014) network

(with the feature extractor part frozen) and trained it to perform a bi-

nary classification task. Similarly, Espinosa et al. (2019) also extracted

OF images but instead of directly stacking horizontal and vertical

components, the magnitude of the flow was computed. Moreover, the

authors combined those magnitudes from different cameras and resized

them to a small resolution. Their model was a small CNN with a

binary cross entropy loss. Similar to the first works introduced in this

section, these also require the computation of additional features (in

this case OF images), which can add more computational burden to the

fall detection pipeline. In fact, depending on the lighting conditions,

the generated OF images may not be really helpful since the OF

algorithm does not correctly recognise the movement flow with not-

controlled lighting conditions. Lu et al. (2018) trained a 3DCNN and

an LSTM model in which the 3DCNN was pre-trained in the Sports-

1M dataset (Karpathy et al., 2014) (not related to fall detection) and

an LSTM was trained for fall detection making use of the already

pre-trained feature extractor. We believe that the Transformer-based

network we employ in this work is more interesting to model the

temporal dynamics. Due to its self-attention component, the network

can attend to all the tokens.

A multi-stream approach was proposed by Carneiro et al. (2019)

with a VGG16 network as a backbone feature extractor. Each stream

processed a different feature, namely: stacked OF, poses and RGB

data. Chen et al. (2020) extracted the skeleton of the person of interest

using OpenPose (Cao et al., 2019) and used a set of heuristics to

decide whether the activity could be categorised as a (potential) fall.

Moreover, the model incorporated the activation of an alarm which

would be triggered if the subject could not stand up.

A mobile-device-oriented application for fall detection was designed

by Han et al. (2020): a two-stream approach combining a motion-

based feature extraction and a lightweight VGG architecture called

mobileVGG. Khraief et al. (2020) presented a weighted neural multi-

stream approach in which the input modalities were: (i) RGB (for

colours and textures) and depth (for illumination), (ii) silhouette vari-

ations (in order to detect movement), (iii) amplitude and oriented flow

and (iv) optical flow. The authors carried out experiments on early and

late fusion and also on the weighting of each stream. Berlin and John

(2021) employed a Siamese network trained by distance-metric-based

learning. The network took pairs of different videos and measured

their L1 distance before applying a sigmoid function to the result. If

the videos are similar, their ground truth should be 1, or 0 other-

wise. Gomes et al. (2022) used a YOLOv3 detection network (Redmon

and Farhadi, 2018) to extract humans per-frame and the Kalman filter

for the time-aware alignment of frame sequences (tracking each person

in the scene). Each sequence was then classified into fall or not fall by

a 3DCNN or a 2DCNN with an LSTM.

More recently, the authors of Yadav et al. (2022) evaluated their

ARFDNet model with the same dataset we use, i.e. the UP-Fall dataset.

ARFDNet is composed of (i) a skeleton extraction module, (ii) a CNN

to extract spatial features and (iii) a Gated Recurrent Unit (Cho et al.,

2014) module for the spatio-temporal features. The output of the latter
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Fig. 1. Our proposed fall detection model. A sequence of input clips (of 1 s each)

sampled from a video is passed through the Uniformer network to extract features.

Besides, the Uniformer generates, for each clip, a probability distribution across the

possible fall and no-fall classes of a given dataset. The highest probability is taken as

the predicted class label of each clip.

was used for the classification of activities and falls. Similarly, Suarez

et al. (2022) also fed their network with pose information. The for-

mer was composed of 1D CNN layers and a classifier on top. Inturi

et al. (2023) used a CNN + LSTM combination with poses as input

too. Mobsite et al. (2023) employed silhouettes as input to a ConvL-

STM (Shi et al., 2015) model. And going even further, Galvao et al.

(2022) completely segmented the person on each frame and trained a

Generative Adversarial Network (Goodfellow et al., 2014) to classify

activities of daily living. In this model, falls are considered anomalies

and detected as such. All of these approaches require a preprocessing

step of extracting poses, silhouettes or segment the person falling,

which adds a computation overhead and can propagate errors to the

next step.

Instead of using poses, other features were extracted in the work

of Le et al. (2022) using wearable devices. These features, used as input

for various traditional classification algorithms, allowed them to obtain

very high F1 metric results (96.16 for falls and 99.90 for non-falls) on

the UP-Fall dataset.

In contrast to most of these works, our model does not require

additional features such as OF or depth images for the detection of falls.

This alleviates the computational overhead of computing more features,

which may be pivotal for lightweight devices with low computational

resources (usually employed for inference).

3. Methodology

A fall detection model addresses the binary problem in which the

model must decide, for a given input (e.g. a sequence of frames or

data from a wearable device), whether a person is falling or not.

For that purpose, our fall detection model’s first objective was to

exclusively use RGB frames. This means that additional features, e.g. OF

or depth images, are not required, thus allowing for the development of

computationally less intensive networks. This also reduces the latency,

which is crucial for real-time fall detection applications. On the other

hand, the second objective of our model was to process videos in a

sliding-window fashion to produce intermediate outputs. With this, the

model is able to detect falls shortly after processing a few frames, hence

allowing the model to quickly respond to fall events.

More formally, consider an input video  = {1, 2,… , } com-

posed of  frames. We extract several chunks of size  (representing

the number of frames within each chunk) and generate an output

 = {1, 2,… , ⌈∕ ⌉}, where each element  = {0, 1} is the output

result, indicating whether a fall has been detected in the th chunk

(0 ≤  < ⌈∕ ⌉). This high-level overview of the model is illustrated in

Fig. 1. In a data stream, frames accumulate until frames are available

to create a chunk and a single output (indicating whether a fall has been

detected) is generated. For the evaluation of our model, we will use a

state-of-the-art fall detection dataset and, thus, we will consider sets of

videos of varying sizes instead of a continuous stream of frames.

Our fall detection model takes each of the  (0 ≤  < ⌈∕ ⌉)

chunks and passes them through a feature extraction network  . This

network decides whether a fall has ocurred in the input video clip.

Our chosen backbone network,  , is a Uniformer (Li et al., 2022),

which is a vision transformer that, as highlighted by the authors, has

a good balance between accuracy and computational efficiency. This

is desirable for applications looking for a good performance but with a

minimal latency. What the authors of Li et al. (2022) contribute in their

paper is the Uniformer block, which is composed of three components:

(i) the Dynamic Position Embedding (DPE), (ii) the Multi-Head Relation

Aggregator (MHRA) and a feedforward network. Fig. 2 illustrates a

Uniformer block with its three main components.

Concerning each of the components of the Uniformer block, the first

one, the DPE, is a lightweight position encoding based on a depthwise

convolution, adaptable to varying sequence lengths. The MHRA is a

self-attention block designed to minimise redundancy; it works like a

convolutional layer: it applies self-attention on a smaller neighbour-

hood of tokens instead of trying to apply attention over all tokens.

This includes a token affinity matrix that expresses the relation between

two tokens or positions. In shallow layers, token affinity is simply the

relative distance between tokens. In deeper layers, token affinity is

computed as the content similarity with the rest of the tokens within the

neighbourhood. Having taken these three components into account to

build a Uniformer block, the Uniformer network is built stacking local

and global Uniformer blocks (i.e. stacking blocks that apply MHRA in

shallow layers and blocks of deeper layers, respectively).

The Uniformer network is pretrained2 on two human action classifi-

cation datasets, Kinetics (Smaira et al., 2020) and Something-Something

(Goyal et al., 2017), at a resolution of 224 × 224. Since the model is

pretrained,  will be fixed to 16, i.e. 16 frames are taken to detect

falls. Fig. 2 illustrates the structure of the model.

Each video clip of  frames is automatically labelled taking the

majority vote of the per-frame ground-truth class labels. In other words,

within a single chunk  = { , +1,… , + }, each frame  will

have its own label  = {0, 1,… ,}, where  represents the amount

of classes in the dataset. The dataset comprises several classes, some of

which are related to falls. Depending on the experiment, the number

of classes can be reduced to 2 (binary classification) and, hence, each

frame will be classified as negative or positive.

We trained the model on a per-clip basis, treating each clip of size

 as a training sample. We employ cross entropy loss and the Adam

optimiser for the training. After each epoch, an evaluation is conducted

on the development set (that is, an evaluation dataset extracted from

the training set and not used for training). Training is stopped when

a chosen metric (F1 score in our experiments, see Section 4.2 for our

evaluation metrics) computed on the development set does not improve

after a predefined number of epochs. This number is referred to as

patience and is shown in the experiment tables of Section 4.3. In what

follows, the patience has been set to 10 epochs.

The code for these experiments can be accessed on GitHub.3

2 https://huggingface.co/Sense-X/uniformer_video
3 https://github.com/AdrianNunez/transformer-based-fall-detection
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Fig. 2. Uniformer block that is stacked to build the Uniformer network. It is composed of three main components: the Dynamic Position Embedding (DPE), the Multi-Head Relation

Aggregator (MHRA) and a feedforward network (FFN). The purpose of the MHRA is to minimise redundancy. We refer readers to the original Uniformer publication (Li et al.,

2022) for further details about its architecture.

Fig. 3. UP-Fall Detection Dataset sample video frames. Example of a sequence of frames showing a fall, corresponding to Subject 1, Activity 1, Trial 1.

Table 1

UP-Fall dataset’s activities or classes. Classes 1–5

are fall-related classes.

ID Description

1 Falling forward using hands

2 Falling forward using knees

3 Falling backwards

4 Falling sideward

5 Falling sitting in empty chair

6 Walking

7 Standing

8 Sitting

9 Picking up an object

10 Jumping

11 Laying

4. Evaluation

4.1. Datasets

The UP-Fall dataset (introduced by Martínez-Villasenor et al. 2019)

is a large fall detection dataset composed of 11 activities (see Table 1),

each with 3 trials, and recorded using 17 young adults without im-

pairments. The dataset contains data from wearable sensors, ambient

sensors and vision devices (although, in this paper, only the latter will

be used). Concerning the vision devices, two cameras are available,

each providing a distinct viewpoint of the falls. For our experiments,

we only employed the data from camera 1 since the data obtained from

camera 2 was considered to be too noisy. A sample sequence (from

camera 1) of the dataset is shown in Fig. 3.

The dataset can be binarised by merging classes 1 to 5 into a single

class, which we call ‘‘Class 1’’, while the rest are merged into another

one which we will refer to as ‘‘Class 0’’. Depending on the evaluation

strategy employed, the binary setting or the multiclass setting will be

used.

The UR Fall dataset (Kwolek and Kepski, 2014) is another fall

detection dataset comprising 70 videos, where 30 of them contain a

fall event (see Fig. 4 for an example). Since fall detection datasets are

inherently unbalanced in terms of classes (since there are many more

non-fall samples), we restricted the dataset to these 30 videos and did

include the remaining 40 videos without falls.

The dataset has been annotated frame by frame with three possible

labels: ‘‘fall has not occurred’’, ‘‘falling’’ and ‘‘on the floor’’ (after the

fall). We binarise the dataset so that any frame not labelled as ‘‘falling’’

is considered a ‘‘not fall’’ frame. Moreover, the dataset also contains

data from accelerometers and another camera view. The former will

not be employed in this work since we are exclusively interested in

vision-based approaches. The additional camera view provides a top-

down perspective, which is not usual in fall detection datasets. It would

be interesting to cover it in another work as a top-view approach, but

we have deemed it out of the scope of this work.

4.2. Evaluation methodology

In order to compare our work with the state of the art, we adopted

two evaluation strategies. We will simply refer to them as the first and

the second evaluation strategies.

In the first evaluation strategy we will adopt in this work, which

was originally proposed in the paper of the dataset (Martínez-Villasenor

et al., 2019) and has been described in Section 4.1, a multiclass

classification problem is addressed. The authors also proposed a public

fall detection challenge, which was presented in Ponce and Martínez-

Villasenor (2020). This is precisely the first evaluation strategy we

will adopt in this work. We split the data into three sets: training,

development and test. The training set is used to tune the network’s

weights; the development set is used to evaluate the model iteratively

and stop the training; and the test set is used for the final evaluation.

The following subjects’ data is used for training: 1, 3, 4, 7 and 10–14, in

total they comprise 70% of the dataset. The trial 3 of subjects 1, 3 and

4 were chosen by us for the development set, as the original challenge

does not specify how to create a development set. For the testing or

evaluation set, the challenge proposes the data from subjects 15–17.

The detection results to be evaluated must be given using windows of

1 s of duration, without overlapping. The label of a given window is

considered to be the most frequent one among the labels of individual

frames within the window, as described in Section 3.

The second evaluation strategy we employed is the one originally

presented by Espinosa et al. (2019) in which the classes are binarised,

i.e. any fall class is considered class 1 while the rest of activities are

grouped in class 0. For the sake of comparison with the literature, we

also obtained results for the multiclass setting. All trial 3 data is used

for the test set while the remaining trials’ data is used for the training

set. Just like in the previous strategy, we created a development set

taking trial 2 data of subjects 1, 3 and 4.

The metrics proposed for the evaluation are the accuracy and the F1

score (using the implementation of Pedregosa et al. 2011). The former

one is usually given in the state of the art, although it is not very

useful in fall detection datasets as they tend to be skewed, i.e. there

are many more negative samples than positive samples, making the

accuracy not reliable. In fact, in tasks such as fall detection, in which
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Fig. 4. UR Fall Detection Dataset sample video frames (camera 0, first sample with fall).

Table 2

Summary of the experiments performed with the first evaluation strategy as proposed by Dodge et al. (2019).

Computing infrastructure Nvidia A100

Best validation accuracy 98.21

Best validation F1-score 91.89

Training duration 5.12 h

Model implementation https://github.com/AdrianNunez/transformer-based-fall-detection

Hyperparameter Search space Best assignment

Number of epochs {10, 50} 50

Learning rate {10e−4, 5e−5 10e−5, 5e−6} 1e−5

Batch size 16 16

Weight decay 0.00001 0.00001

Early stopping patience (in epochs) 10 10

Oversample classes {No, Yes} Yes

Model variation {Small400, Baseline400, Small600, Baseline600} Small400

Table 3

Results for the first evaluation strategy with the UP-Fall dataset.

ID Accuracy F1-score

Martínez-Villasenor et al. (2019) 94.32 (±0.31) 70.44 (±1.25)

Challenge 1st position (Ponce and Martínez-Villasenor, 2020) – 82.47

Challenge 2nd position (Ponce and Martínez-Villasenor, 2020) – 34.04

Challenge 3rd position (Ponce and Martínez-Villasenor, 2020) – 31.37

Challenge honorific mention (Ponce and Martínez-Villasenor, 2020) – 60.40

Ours 96.67 82.24

not detecting a fall can lead to serious consequences, it is crucial to

avoid false negatives. Given the small amount of positive samples in

fall detection datasets, the accuracy metric can misleading, as a high

accuracy can also come with a relatively high number of false nega-

tives. Alternatively, the F1 score is proposed in the UP-Fall challenge

and is recommended as an alternative to the accuracy as it takes into

account the unbalanced nature of fall datasets. For our experiments, we

computed the unweighted mean of F1 scores across classes.

4.3. Results

The results of our experiments are compared with the state of the art

if the comparison is fair, i.e. the results are compared under the same

evaluation strategy, data split and so on. We divided the experiments

into two sets: those experiments using the first evaluation strategy

and those using the second one. In the latter, we also divided the

experiments between those using a binary classification approach and

those following a multiclass classification setting.

Among the works that are left out of this comparison, we have

Ramirez et al. (2021, 2022), in which the authors extracted skeleton

poses from RGB frames. Ramirez et al. (2021) only used individual

frames, but Ramirez et al. (2022) employed 1-second windows of poses

(poses of every frame) to classify instances between fall and not fall.

However, their data split was randomly selected and, hence, it is not

directly comparable with any of the two strategies presented here. Their

best results were obtained with a Random Forest classifier, obtaining a

99.81% of accuracy and a 99.56 of F1. Afterwards, the same authors

extended this work with Ramirez et al. (2023). Since in their first work

they did not obtain good results using an LSTM model, in this new work

they used a BERT model (Devlin et al., 2018), whose inputs were pose

sequences. They initially obtained an accuracy of 81.14% and an F1

score of 80.95, but they argued that the lower results are a consequence

of the class imbalance. To alleviate this, they artificially augmented

the dataset using a GAN network called TABGAN (Ashrapov, 2020).

With this new data taken into consideration, the accuracy and F1 score

increased to 99.50% and 87.20, respectively.

Following with the use of poses, Taufeeque et al. (2021) obtained

poses with a multi-camera and multi-person approach. Their approach

also employed an LSTM network and obtained an F1 score of 92.5.

Meanwhile, Galvao et al. (2021b) employed a spatio-temporal graph

neural network (pretrained on a large activity recognition dataset) as a

feature extractor. An autoencoder tried to reconstruct the input and, in

case the error was higher than a predefined threshold, an anomaly (a

fall) was detected. Their proposed method led them to an accuracy of

98.62% and an F1 score of 93. All the works mentioned here detect

falls in a binary setting (not multiclass), but they do not share the

data splits of the first and second evaluation strategies and, therefore,

cannot be directly compared with our experiments. Nonetheless, they

also obtained remarkable results, compared with the results obtained

by our model.

4.3.1. Results under the first evaluation strategy

With the first evaluation strategy, we made the hyperparameter

search detailed in Table 2 following the guideline to present machine

learning results published by Dodge et al. (2019). Four variations of

the Uniformer were used, namely, the small and baseline versions

pretrained on Kinetics-400 and on Kinetics-600.

The results of the experiment with this evaluation strategy are

shown in Table 3 alongside other approaches in the literature that

follow the same evaluation strategy. Martínez-Villasenor et al. (2019)

presented the UP-Fall dataset and some baseline experiments using

that dataset with traditional machine learning algorithms, i.e. no deep



Engineering Applications o Artifcial Intelligence 132 (2024) 107937

6

A. Núnez-Marcos and I. Arganda-Carreras

Table 4

Second evaluation strategy’s search space and best assignments.

Computing infrastructure Nvidia A100

Best validation accuracy 99.02 (binary), 97.37 (multiclass)

Best validation F1-score 93.83 (binary), 97.20 (multiclass)

Training duration 1,67 h (binary), 12.76 h (multiclass)

Model implementation https://github.com/AdrianNunez/transformer-based-fall-detection

Hyperparameter Search space Best assignment

Number of epochs {10, 50} 50

Learning rate {10e−4, 10e−5} 1e−4

Batch size 16 16

Weight decay 0.00001 0.00001

Early stopping patience (in epochs) 10 10

Class weight for falls {1, 2} 1

Oversample classes {No, Yes} Yes

Window size {8, 16} 16 (binary), 8 (multiclass)

Model variation {Small400, Baseline400, Small600, Baseline600} Small400

Table 5

Results for evaluation strategy 2 with UP-Fall dataset

(with multiclass classification).

ID Accuracy F1-score

Espinosa et al. (2019) 82.26 72.94

Ours 93.17 93.39

Table 6

Results for evaluation strategy 2 with UP-Fall dataset

(with binary classification).

ID Accuracy F1-score

Espinosa et al. (2019) 95.64 97.43

Ours 99.17 94.14

learning algorithm was used. The models they applied were Random

Forests, Support Vector Machines, k-Nearest Neighbours and Multi-

layer Perceptrons. They also explored various data types and their

combinations: (i) infrared sensor data, (ii) wearable IMU data, (iii) all

wearable IMU data and the EEG headset data, (iv) all infrared sensors,

all wearable IMU data and the EEG headset data, (v) camera data, (vi)

all infrared sensors and camera data and (vii) all wearable IMU, EEG

headset and camera data. Their best result in terms of accuracy and

F1-score, shown in Table 3, was obtained with a Multilayer Perceptron

and a window size of 1 s, using all wearable IMU, EEG headset and

camera data as input.

After the aforementioned work, the team launched the challenge

presented in Ponce and Martínez-Villasenor (2020). They presented

the winners of the challenge and one honorific mention. The results

obtained by these four participants are shown in Table 3. The winner

employed a Random Forest and sensor data, the second place used a 1-

layer CNN and sensor data, the third place made use of a bi-LSTM (the

data used is not mentioned) and the honorific mention did not send a

short paper and, thus, it is unknown how they obtained their result.

With the first evaluation strategy, we obtained a result similar to

the first position of the challenge presented in Ponce and Martínez-

Villasenor (2020) only relying on vision data, without the need of

the sensor data they employed. Besides, compared with the best base-

line model proposed in Martínez-Villasenor et al. (2019), we have an

improvement of more than 10 points in the F1 score.

4.3.2. Results under the second evaluation strategy

With the second evaluation strategy, we also made a hyperparame-

ter search. The details have been written down in Table 4. Once again,

four variations of the Uniformer were explored.

Let us begin by comparing our multiclass result (see Table 5) with

the one obtained by Espinosa et al. (2019). We were able to obtain

a 20 point difference in the F1 score with respect to them. For the

binary classification case, shown in Table 6, we are 3 points below

in the F1 score, although both results are very high. Nonetheless, our

purpose was to create a model that only takes RGB frames, without any

additional computation and, in contrast, Espinosa et al. (2019) used OF

images. In fact, the task may get easier using OF images due to the

erased background clutter. Our model, in contrast, seems to generalise

better to more classes, maybe due to the usage of RGB frames and the

suppression of appearance-related features.

Even though the comparison it not fair, the works presented in the

introduction of Section 4.3, i.e. Ramirez et al. (2021, 2022), Ashrapov

(2020), Taufeeque et al. (2021), Galvao et al. (2021b), also presented

results of a binary fall detection task. We were able to perform better

than most of them even though we did not compute skeletons.

4.3.3. Joint fine-tuning with UP-Fall and UR Fall datasets

To assess the adaptability of our approach to other datasets, we

conducted an additional experiment by combining two datasets: UP-

Fall and UR Fall (both introduced in Section 4.1). Using the pretrained

network (on UP-Fall) without fine-tuning on the new dataset (UR Fall)

the results were unsatisfactory, as shown in the first row of Table 7. The

accuracy was only 43.48% and the F1 score was 30.30. This outcome is

attributed to the fact that the original benchmark-trained model lacks

the ability to generalise to any fall event, as it has not been trained

with sufficient data from diverse sources. However, collecting a massive

amount of data for fall detection is currently not possible (to the best

of our knowledge). To address this limitation, we propose a fine-tuning

approach (i.e. re-training the pretrained Uniformer from scratch) in

which we train the network with both datasets together (mixed in

the same training procedure) to observe how the model adapts when

provided with more data.

The training procedure for this experiment followed the same ap-

proach as in our previous experiments (using the second evaluation

strategy with binary classes). We used a combined development dataset

(including samples of both classses, equally represented) to guide the

training. In order to identify the optimal fine-tuning learning rate, we

explored three different learning rates: 1e−4, 5e−4 and 5e−5 (the best

result was obtained with 5e−5). Additionally, we experimented with the

use of a class weight of 2 for the fall class to address any class imbalance

issues that may arise during training and we saw that the use of this

weight improved the results. Furthermore, to ensure a fair representa-

tion of the fall class in the UR Fall dataset, we performed oversampling.

The fall class was oversampled to match the number of samples in the

negative class within the same dataset. This oversampling technique

allowed us to mitigate potential biases and improve the model’s ability

to learn from both classes effectively.

The results can be found in Table 7. Although the training is per-

formed with both datasets at the same time, the evaluation is divided

as seen in Table 7 to assess the results on both datasets separately. A

slight drop in performance is observed on the UP-Fall dataset, likely

attributed to the model having to learn the appearance of another

dataset. Nevertheless, even with this drop, the performance on both

datasets remains remarkably high in terms of F1 score. This outcome is

encouraging and suggests that the model has the potential to generalise

well to different fall scenarios.
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Table 7

Results for evaluation strategy 2 with the UP-Fall and UR Fall datasets (with binary

classification) mixed together. The first result for UR Fall has been computed using the

best model fine-tuned with UP-Fall in previous experiments.

Dataset Accuracy F1-score

UR Fall (not fine-tuned) 43.48 30.30

UP-Fall (jointly fine-tuned) 99.03 92.35

UR Fall (jointly fine-tuned, w/o oversampling) 91.30 89.73

UR Fall (jointly fine-tuned, w/ oversampling) 95.45 94.76

4.3.4. Comparison with wearable-based fall detection

Throughout this paper, we have focused on vision-based approaches,

specifically those using 2D cameras. However, it is essential to ac-

knowledge that wearable-sensor-based solutions have their own set of

advantages and disadvantages, depending on the specific scenario. In

terms of performance, wearable sensors often provide more discrimina-

tive data for the detection of falls, which can lead to a higher accuracy

in this task compared to vision-based methods. As a result, wearable-

sensor-based solutions tend to achieve better results in fall detection

tasks. In this section, we present a comparative analysis, contrasting

the results obtained from our vision-based approach with those of

wearable-sensor-based solutions. By understanding the trade-offs and

strengths of each approach, we aim to provide insights into the relative

merits of vision-based and wearable-sensor-based fall detection models.

Table 8 presents a summary of the recent results from the literature

for the UP-Fall dataset, specifically focusing on studies using wearable-

sensor information or a combination of sensor and RGB data. Our

results in this table are based on the second evaluation strategy, as we

conducted experiments in both binary and multiclass settings.

It is important to note that a direct comparison between the ap-

proaches listed in Table 8 and the model proposed in this paper may

not be fair, as they may not share the same train/evaluation splits, com-

pute metrics differently and have different clip lengths for generating

outputs. Moreover, some works adopt a binary configuration (i.e., fall

or not fall), while others consider all possible classes of the dataset.

However, this comparison allows us to observe that our vision-based

transformer approach achieves results that are close to the state-of-the-

art solutions in the sensor-based fall detection task. This finding further

reinforces the promise and potential of vision-based methods for fall

detection and highlights the effectiveness of our proposed approach in

capturing relevant information from RGB data to identify fall events

accurately.

It is worth mentioning that the goal of this comparison is not to

establish superiority over other approaches but rather to put in context

the performance of our method in relation to the existing body of

literature. We believe that the diverse range of fall detection techniques

showcased in Table 8 contributes to a comprehensive understanding of

the advancements in this field and emphasises the significance of our

contributions within the vision-based fall detection domain.

5. Conclusions

In this paper, we introduced a transformer-based fall detection

model, leveraging the Uniformer architecture. Our RGB-only approach,

aligned with UP-Fall dataset guidelines, achieved competitive or im-

proved results compared to existing methods without relying on ad-

ditional features or wearable-sensor data. Our fall detection model

demonstrates the capability to promptly emit an alarm upon detecting

a fall event.

Future research avenues include exploring anticipation capabilities,

inspired by recent works such as Li and Song (2023). Collaborating

with healthcare professionals is also crucial for refining our model’s

real-world application. Their insights will guide adjustments to meet

end-user needs effectively.

Table 8

Results of the literature of fall detection using the UP-Fall dataset for the evaluation

and sensor data or skeleton information as input. For our results, we used the second

evaluation strategy.

Type Binary? Accuracy F1-score

Ponce et al. (2020) Sensor+RGB ✓ 98.72 95.77

Waheed et al. (2021) Sensor ✓ 97.21 97.43a

Galvao et al. (2021a) RGB+Sensor ✓ 99.99 –

Al Nahian et al. (2021a) Sensor ✓ 96.00 97.00a

Al Nahian et al. (2021b) Sensor ✓ 100.00 –

Ashrapov (2020) Skeleton ✓ 99.50 87.20

Taufeeque et al. (2021) Skeleton ✓ – 92.5

Galvao et al. (2021b) Skeleton ✓ 98.62 93

Ramirez et al. (2021) Skeleton ✓ 99.34 98.52

Ramirez et al. (2022) Skeleton ✓ 99.81 99.56

Ramirez et al. (2023) Skeleton ✓ 81.14 80.95

Ours RGB ✓ 99.17 94.14

Type Binary? Accuracy F1-score

Martínez-Villasenor et al. (2019) Sensor ✗ 95.49 70.31

Chahyati and Hawari (2020) Sensor ✗ – 81.40

Chahyati and Hawari (2020) RGB+Sensor ✗ – 95.44

Ramirez et al. (2021) Skeleton ✗ 99.45 92.34

Le et al. (2022) Sensor ✗ – 99.60

Mohan Gowda et al. (2022) RGB+Sensor ✗ 99.2 98.4

Islam et al. (2023) RGB+Sensor ✗ 97.90 97.88

Yan et al. (2023) Skeleton+Sensor ✗ 98.05 88.30

Ours RGB ✗ 93.17 93.39

a Manually computed based on Recall and Precision.

Furthermore, to improve the robustness and generalisability of our

model, a larger, diverse fall detection dataset is essential. This ex-

pansion will facilitate training a more adaptable and reliable neural

network.

In conclusion, our work lays a solid foundation for vision-based fall

detection models and presents a promising direction for future research.

By exploring proactive fall detection, collaborating with healthcare

professionals, and collecting more comprehensive datasets, we aspire

to continue advancing the field of fall detection and contribute to

improving the safety and well-being of individuals at risk of falls.
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